[1]
Novoselov, Kostya S, Andre K Geim, Sergei V Morozov, D Jiang, Y Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric Field Effect in Atomically Thin Carbon Films., science 306, no. 5696 (2004): 666-69.
DOI: 10.1126/science.1102896
Google Scholar
[2]
Liu, Fang, Pingbing Ming, and Ju Li. Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene under Tension., Physical Review B 76, no. 6 (2007): 064120.
DOI: 10.1103/physrevb.76.064120
Google Scholar
[3]
Lee, Changgu, Xiaoding Wei, Jeffrey W Kysar, and James Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene., science 321, no. 5887 (2008): 385-88.
DOI: 10.1126/science.1157996
Google Scholar
[4]
Wang, Shuaiwei, Baocheng Yang, Shouren Zhang, Jinyun Yuan, Yubing Si, and Houyang Chen. Mechanical Properties and Failure Mechanisms of Graphene under a Central Load., ChemPhysChem 15, no. 13 (2014): 2749-55.
DOI: 10.1002/cphc.201402258
Google Scholar
[5]
Wei, Y., J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus. The Nature of Strength Enhancement and Weakening by Pentagon-Heptagon Defects in Graphene., Nat Mater 11, no. 9 (2012): 759-63.
DOI: 10.1038/nmat3370
Google Scholar
[6]
Zhou, Qingxiao, Yongjian Tang, Chaoyang Wang, Zhibing Fu, and Hong Zhang. Electronic and Magnetic Properties of Transition-Metal Atoms Absorbed on Stone–Wales Defected Graphene Sheet: A Theory Study., Computational Materials Science 81 (2014): 348-52.
DOI: 10.1016/j.commatsci.2013.08.032
Google Scholar
[7]
Fu, Yin, Tarek Ragab, and Cemal Basaran. The Effect of Stone-Wales Defects on the Mechanical Behavior of Graphene Nano-Ribbons., Computational Materials Science 124 (2016): 142-50.
DOI: 10.1016/j.commatsci.2016.07.022
Google Scholar
[8]
Sun, Linlin, Liu Chu, Jiajia Shi, and Eduardo Souza de Cursi. The Impacts of Random Distributed Vacancy Defects in Steady-State Thermal Conduction of Graphene., Applied Sciences 9, no. 11 (2019).
DOI: 10.3390/app9112363
Google Scholar
[9]
Xie, Lu, Tingwei Sun, Chenwei He, Haojie An, Qin Qin, and Qing Peng. Effect of Angle, Temperature and Vacancy Defects on Mechanical Properties of Psi-Graphene., Crystals 9, no. 5 (2019).
DOI: 10.3390/cryst9050238
Google Scholar
[10]
Yazyev, Oleg V, and Steven G Louie. Topological Defects in Graphene: Dislocations and Grain Boundaries., Physical Review B 81, no. 19 (2010): 195420.
DOI: 10.1103/physrevb.81.195420
Google Scholar
[11]
[11] Balasubramanian, K., T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, R. Pratap, and S. Raghavan. Reversible Defect Engineering in Graphene Grain Boundaries., Nat Commun 10, no. 1 (2019): 1090.
DOI: 10.1038/s41467-019-09000-8
Google Scholar
[12]
Jeong, Byoung Wook, Jisoon Ihm, and Gun-Do Lee. Stability of Dislocation Defect with Two Pentagon-Heptagon Pairs in Graphene., Physical Review B 78, no. 16 (2008).
DOI: 10.1103/physrevb.78.165403
Google Scholar
[13]
Cretu, O., A.V. Krasheninnikov, J.A. Rodriguez-Manzo, L. Sun, R.M. Nieminen, and F. Banhart. Migration and Localization of Metal Atoms on Strained Graphene., Phys Rev Lett 105, no. 19 (2010): 196102.
DOI: 10.1103/physrevlett.105.196102
Google Scholar
[14]
Wang, Lu, Jianfeng Jin, Jingyi Cao, Peijun Yang, and Qing Peng. Interaction of Edge Dislocations with Graphene Nanosheets in Graphene/Fe Composites., Crystals 8, no. 4 (2018): 160.
DOI: 10.3390/cryst8040160
Google Scholar
[15]
Zandiatashbar, Ardavan, Gwan-Hyoung Lee, Sung Joo An, Sunwoo Lee, Nithin Mathew, Mauricio Terrones, Takuya Hayashi, Catalin R Picu, James Hone, and Nikhil Koratkar. Effect of Defects on the Intrinsic Strength and Stiffness of Graphene., Nature Communications 5 (2014): 3186.
DOI: 10.1038/ncomms4186
Google Scholar
[16]
Zhang, Ji, Tarek Ragab, and Cemal Basaran. Comparison of Fracture Behavior of Defective Armchair and Zigzag Graphene Nanoribbons., International Journal of Damage Mechanics 28, no. 3 (2019): 325-45.
DOI: 10.1177/1056789518764282
Google Scholar
[17]
Cao, Qiang, Xiao Geng, Huaipeng Wang, Pengjie Wang, Aaron Liu, Yucheng Lan, and Qing Peng. A Review of Current Development of Graphene Mechanics., Crystals 8, no. 9 (2018): 357.
DOI: 10.3390/cryst8090357
Google Scholar
[18]
Lei, Shuting, Qiang Cao, Xiao Geng, Yang Yang, Sheng Liu, and Qing Peng. The Mechanical Properties of Defective Graphyne., Crystals 8, no. 12 (2018): 465.
DOI: 10.3390/cryst8120465
Google Scholar
[19]
Wu, Guo-xun, Chenliang Li, Yu-hang Jing, Chao-ying Wang, Yong Yang, and Zhen-qing Wang. Electronic Transport Properties of Graphene Nanoribbon Heterojunctions with 5–7–5 Ring Defect., Computational Materials Science 95 (2014): 84-88.
DOI: 10.1016/j.commatsci.2014.07.023
Google Scholar
[20]
Mortazavi, Bohayra, and Saïd Ahzi. Thermal Conductivity and Tensile Response of Defective Graphene: A Molecular Dynamics Study., Carbon 63 (2013): 460-70.
DOI: 10.1016/j.carbon.2013.07.017
Google Scholar
[21]
Li, Maoyuan, Tianzhengxiong Deng, Bing Zheng, Yun Zhang, Yonggui Liao, and Huamin Zhou. Effect of Defects on the Mechanical and Thermal Properties of Graphene., Nanomaterials 9, no. 3 (2019): 347.
DOI: 10.3390/nano9030347
Google Scholar
[22]
Robertson, Alex W, and Jamie H Warner. Atomic Resolution Imaging of Graphene by Transmission Electron Microscopy., Nanoscale 5, no. 10 (2013): 4079-93.
DOI: 10.1039/c3nr00934c
Google Scholar