[1]
Y. Alcheikhhamdon, M. Hoorfar, Natural gas purification from acid gases using membranes: A review of the history, features, techno-commercial challenges, and process intensification of commercial membranes, Chemcal Engineering and Processing-Process Intensification. 2017, 120, 105–113.
DOI: 10.1016/j.cep.2017.07.009
Google Scholar
[2]
S. Faramawy, T. Zaki, A.A.E. Sakr, Natural gas origin, composition, and processing: A review, Journal of Natural Gas Science and Engineering. 2016, 34, 34–54.
DOI: 10.1016/j.jngse.2016.06.030
Google Scholar
[3]
L. Shi, K. Yang, Q. Zhao, H. Wang, Q. Cui, Characterization and Mechanisms of H2S and SO2 Adsorption by Activated Carbon, Energy & Fuels. 2015, 29, 6678–6685.
DOI: 10.1021/acs.energyfuels.5b01696
Google Scholar
[4]
G. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, C. Li, Direct splitting of H2S and S on CdS-based photocatalyst under visible light irradiation, Journal of Catalysis. 2008, 260, 134–140.
DOI: 10.1016/j.jcat.2008.09.017
Google Scholar
[5]
C. Cazorla, S.A. Shevlin, Z.X. Guo, First-principles study of the stability of calcium-decorated carbon nanostructures, Physical Review B. 2010, 82, 1–12.
DOI: 10.1103/physrevb.82.155454
Google Scholar
[6]
Zhou, Q., Su, X., Ju, W., Yong, Y., Wang, Adsorption of H2S on graphane decorated with Fe, Co and Cu: A DFT study, RSC Advances. 2017, 7, 31457–31465.
DOI: 10.1039/c7ra04905f
Google Scholar
[7]
D. Cortés-Arriagada, N. Villegas-Escobar, D. E. Ortega, Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments, Applied Surface Science. 2018, 427, 227–236.
DOI: 10.1016/j.apsusc.2017.08.216
Google Scholar
[8]
H.P. Zhang, X.G. Luo, H.T. Song, X.Y. Lin, X. Lu, Y. Tang, DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene, Applied Surface Science. 2014, 317, 511–516.
DOI: 10.1016/j.apsusc.2014.08.141
Google Scholar
[9]
M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, Z. Zhang, Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage, Physical Review Letters. 2008, 100, 1–4.
DOI: 10.1103/physrevlett.100.206806
Google Scholar
[10]
A. Liu, J. Long, S. Yuan, W. Cen, J. Li, Synergetic promotion by oxygen doping and Ca decoration on graphene for CO2 selective adsorption, Physical Chemistry Chemical Physics. 2019, 21, 5133–5141.
DOI: 10.1039/c9cp00004f
Google Scholar
[11]
S.F. Rastegar, H. Soleymanabadi, Z. Bagheri, Physisorption to chemisorption transition of H2S on carbon nanocone induced by decoration of Be2O2 cluster, Journal of The Iranian Chemical Society. 2015, 12, 1099–1106.
DOI: 10.1007/s13738-014-0570-z
Google Scholar
[12]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Physical Review B. 1996, 54, 11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[13]
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science. 1996, 6, 15–50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[14]
G. Kresse, J. Furthmüller, Generalized gradient approximation made simple, Physical Review Letters. 1996, 77, 3865–3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[15]
P.E. Blochl, Projector augmented-wave method, Physical Review B. 1994, 50, 17953–17979.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[16]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B. 1999, 59, 1758–1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[17]
D.R. Lide, Handbook of chemistry and physics. 2003, 1586-1586.
Google Scholar
[18]
T. Kaneko, R. Saito, First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene, Surface Science. 2017, 665, 1–9.
DOI: 10.1016/j.susc.2017.07.004
Google Scholar
[19]
Saenz, Justin, Valdez, Danielle, Flor , Fernando, Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers, Applied Surface Science. 2017, 413, 197–208.
DOI: 10.1016/j.apsusc.2017.04.010
Google Scholar
[20]
Xiao-Qiang Liu, Xue, Y., Tian, Z.Y., Mo, J.J., Qiu, N.X., Chu, W., Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory, Applied Surface Science. 2013, 285, 190–197.
DOI: 10.1016/j.apsusc.2013.08.035
Google Scholar
[21]
M.D. Ganji, A. Mirnejad, A. Najafi, Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes, Science and Technology of Advanced Materials. 2010, 11, 045001.
DOI: 10.1088/1468-6996/11/4/045001
Google Scholar
[22]
Z. Jiang, P. Qin, T. Fang, Investigation on adsorption and decomposition of H2S on Pd (1 0 0) surface: a DFT study, Surface Science. 2015, 632, 195–200.
DOI: 10.1016/j.susc.2014.07.020
Google Scholar
[23]
Z. Khodadadi, Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: Insights from DFT study, Physica E-Low-Dimensional Systems and Manostructures. 2018, 99, 261–268.
DOI: 10.1016/j.physe.2018.02.022
Google Scholar