Co(OH)2/TiO2 Nanotube Composite for High-Rate Performance Supercapacitor

Article Preview

Abstract:

The TiO2 nanotube arrays were prepared on Ti plate by anodizing technology, and then Co (OH)2 nanoparticles in-situ grew into TiO2 nanotubes with "Tube-particle bonding" nanocomposited structure. Co (OH)2 nanoparticles with a particle size of 40.5±8 nm were infiltrated in the TiO2 nanotube arrays, and the Co (OH)2 outside the tube presented a nanosheet structure. The specific capacitance of the Co (OH)2/TiO2 nanotube array composite reached 260 F/g at the current density~1 A/g. The capacity retention rate was 82.5 % after 2,000 cycles at the current density~5 A/g. The high-rate performance of the Co (OH)2/TiO2 nanotube array composite reached 210 F/g at the current density~10 A/g.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1033)

Pages:

116-120

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Malaie, M.R. Ganjali, Spinel nano-ferrites for aqueous supercapacitors; linking abundant resources and low-cost processes for sustainable energy storage, J. Energy Storage. (2020) 102097.

DOI: 10.1016/j.est.2020.102097

Google Scholar

[2] D. He, J. Wan, G. Liu, Design and construction of hierarchical α-Co(OH)2-coated ultra-thin ZnO flower nanostructures on nickel foam for high performance supercapacitors, J. Alloys Comp. (2020) 155556.

DOI: 10.1016/j.jallcom.2020.155556

Google Scholar

[3] D.P. Ojha, M.B. Poudel, H.J. Kim, Investigation of electrochemical performance of a high surface area mesoporous Mn doped TiO2 nanoparticle for a supercapacitor, Mater. Lett. 264 (2020) 127363.

DOI: 10.1016/j.matlet.2020.127363

Google Scholar

[4] M. Wang, J.T. Huang, Research progress on synthesis and modification of Li4Ti5O12 as Li-ion battery anode, J. Func. Mater./Gongneng Cailiao. 51 (2020) 03047.

Google Scholar

[5] S. Asim, M.S. Javed, S. Hussain, RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries, Electro. Acta. 326 (2019) 135009.

DOI: 10.1016/j.electacta.2019.135009

Google Scholar

[6] L. Zhang, Y. Tian, C. Song, Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes/manganese dioxide, J. Alloys Comp. (2020) 157816.

DOI: 10.1016/j.jallcom.2020.157816

Google Scholar

[7] M. Wang, H.X. Huang. P.T. Qi, Reduced grapheme oxide (RGO)/silicon network structured composites: preparation and electrochemical performance as anode materials for Li-ion batteries, Mater. Reports,33 (2019) 927-931.

Google Scholar

[8] Y.H. Qu, X. Tong, C.H. Yan, Hierarchical binder-free MnO2/TiO2 composite nanostructure on flexible seed graphite felt for high-performance supercapacitors, Vacuum. 181 (2020) 109648.

DOI: 10.1016/j.vacuum.2020.109648

Google Scholar

[9] N. Komba, G.X. Zhang, Z.H. Pu, MoS2-supported on free-standing TiO2-nanotubes for efficient hydrogen evolution reaction, Inter. J. Hydro. Energy. 45 (2020) 4468-4480.

DOI: 10.1016/j.ijhydene.2019.12.044

Google Scholar

[10] J. Wang, Y.L. Liu, L. Cheng, Quasi-aligned nanorod arrays composed of Nickel–Cobalt nanoparticles anchored on TiO2/C nanofiber arrays as free standing electrode for enzymeless glucose sensors, J. Alloys Comp. 821 (2020) 153510.

DOI: 10.1016/j.jallcom.2019.153510

Google Scholar

[11] S. Noothongkaew, H.K. Jung, O. Thumtan, Synthesis of free-standing anatase TiO2 membrane by using two-step anodization, Mater. Lett. 233 (2018) 153-157.

DOI: 10.1016/j.matlet.2018.08.116

Google Scholar

[12] A. Ramadoss, S.J. Kim, Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes, Electro. Acta. 136 (2014) 105-111.

DOI: 10.1016/j.electacta.2014.05.014

Google Scholar

[13] H.N. Xing, Y.Y. Lan, Y. Zong, Ultrathin NiCo-layered double hydroxide nanosheets arrays vertically grown on Ni foam as binder-free high-performance supercapacitors, Inorg. Chem. Commun. 101 (2019) 125-129.

DOI: 10.1016/j.inoche.2019.01.031

Google Scholar

[14] H. Li, Z.P. Sun, D.Z. Jia, Self-supporting TiO2@NiCo2S4 arrays composite on the flexible Ti foil for a High-performance asymmetric supercapacitors, Mater. Reports. 34 (2020) 1187-1194.

Google Scholar

[15] M.N. Xu, H. Guo, R. Xue, Sandwich-like GO@Co(OH)2/PANI derived from MOFs as high-performance electrode for supercapacitors, J. Alloys Comp. (2020) 157699.

DOI: 10.1016/j.jallcom.2020.157699

Google Scholar

[16] C. Xu, Y. Chen, Y.N. Ma, Waste activated carbon transformed to electrode of supercapacitor through combining with Co(OH)2, Electro. Acta. (2020) 137475.

DOI: 10.1016/j.electacta.2020.137475

Google Scholar

[17] J.T. Mehrabad, M. Aghazadeh, M.G. Maragheh, α-Co(OH)2 nanoplates with excellent supercapacitive performance: electrochemical preparation and characterization, Mater. Lett. 184 (2016) 223-226.

DOI: 10.1016/j.matlet.2016.08.069

Google Scholar

[18] M. Aghazadeh, K. Yavari, H.F. Rad, Oxygen-functionalized graphitic carbon nitride nanosheets/Co(OH)2 nanoplates anchored onto porous substrate as a novel high-performance binder-free electrode for supercapacitors, J. Energy Storage. 32 (2020) 101743.

DOI: 10.1016/j.est.2020.101743

Google Scholar

[19] X. Li, L. Lu, J. Shen, Metal-organic frameworks induced robust layered Co(OH)2 nanostructures for ultra-high stability hybrid supercapacitor electrodes in aqueous electrolyte, J. Power Sources. 477 (2020) 228974.

DOI: 10.1016/j.jpowsour.2020.228974

Google Scholar

[20] C.L. Wang, H.L. Qu, T. Peng, Large scale α-Co(OH)2 needle arrays grown on carbon nanotube foams as free standing electrodes for supercapacitors, Electro. Acta. 191 (2016) 133-141.

DOI: 10.1016/j.electacta.2016.01.057

Google Scholar

[21] M. He, W.L. Xu, Z Q. Dong, Polyaniline hydrogel anchored in carbon cloth network to support Co(OH)2 as flexible electrode for high-energy density supercapacitor, Inorg. Chem.Commun. 106 (2019) 158-164.

DOI: 10.1016/j.inoche.2019.06.006

Google Scholar

[22] R Rajagopal, K.S. Ryu. Homogeneous MnO2@TiO2 core-shell nanostructure for high performance supercapacitor and Li-ion battery applications, J. Electroanal. Chem. 856 (2020) 113669.

DOI: 10.1016/j.jelechem.2019.113669

Google Scholar