[1]
Z.J. Su, H. Chang, X. Wang, et al, Low loss factor Co2Z ferrite composites with equivalent permittivity and permeability for ultra-high frequency applications, Appl. Phys. Lett. 105 (2014) 062402.
DOI: 10.1063/1.4892889
Google Scholar
[2]
R. C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191-1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[3]
V. G. Harris, A. Geiler, Y.J. Chen, et al, Recent advances in processing and applications of microwave ferrites, J. Magn. Magn. Mater. 321 (2009) 2035-2047.
Google Scholar
[4]
V. G. Harris, Microwave Materials and Applications, IEEE T. Magn. VOL. 48, NO. 3, (2012).
Google Scholar
[5]
R. Topkaya, Effect of Zn substitution on temperature dependent magnetic properties of BaFe12O19 hexaferrites, J. Alloy. Compd. 725 (2017) 1230-1237.
DOI: 10.1016/j.jallcom.2017.07.248
Google Scholar
[6]
Y. Slimani, A. Baykal, Md. Amir, et al, Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites, Ceram. Int. 44 (2018) 15995-16004.
DOI: 10.1016/j.ceramint.2018.06.033
Google Scholar
[7]
A. Hilczer, K. Pasińska, B. Andrzejewski, et al, Magnetic properties of Sr0.95Nd0.05Fe12-xScxO19 hexaferrite nanocrystals: (Tcone, H, x) phase diagram, Ceram. Int. 45 (2019) 1189-1195.
DOI: 10.1016/j.ceramint.2018.09.303
Google Scholar
[8]
S. Guner, M.A. Almessiere, Y. Slimani, et al, Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites, Ceram. Int. 46 (2020) 4610-4618.
DOI: 10.1016/j.ceramint.2019.10.191
Google Scholar
[9]
K. Huang, J.Y. Yu, L. Zhang, et al, Structural and magnetic properties of Gd-Zn substituted M-type Ba-Sr hexaferrites by sol-gel auto-combustion method, J. Alloy. Compd. 803 (2019) 971-980.
DOI: 10.1016/j.jallcom.2019.06.348
Google Scholar
[10]
Y.b. Du, Y. Liu, L.X. Lian, et al, Structural and magnetic properties of Sr0.8La0.2Co0.2Fe11.8-xAlxO19 hexaferrite particles prepared via sol-gel auto-combustion method, J. Magn. Magn. Mater. 469 (2019) 189-195.
DOI: 10.1016/j.jmmm.2018.08.043
Google Scholar
[11]
S. Gupta, S. K. Deshpande, V. G. Sathe, et al, Effect of scandium substitution on magnetic and transport properties of the M-type barium hexaferrites, J. Alloy. Compd. 815 (2020) 152467.
DOI: 10.1016/j.jallcom.2019.152467
Google Scholar
[12]
Y.J. Chen, A. L. Geiler, T. Sakai, et al, Microwave and magnetic properties of self-biased barium hexaferrite screen printed thick films. J. Appl. Phys. 99, 08M904 (2006).
DOI: 10.1063/1.2163288
Google Scholar
[13]
B. K. O'Neil, J. L. Young, Experimental Investigation of a Self-Biased Microstrip Circulator. IEEE T. Microw. Theory, VOL. 57, NO. 7 (2009).
Google Scholar
[14]
V. Laur, G. Vérissimo, P. Quéffélec, et al, Self-Biased Y-Junction Circulators Using Lanthanum- and Cobalt-Substituted Strontium Hexaferrites, IEEE T. Microw. Theory, VOL. 63, NO. 12 (2015).
DOI: 10.1109/tmtt.2015.2495218
Google Scholar
[15]
D. Shekhawat, P.K. Roy, Effect of cobalt substitution on physical & electro-magnetic properties of SrAl4Fe8O19 hexaferrite. Mater. Chem. Phys. 229 (2019) 183-189.
DOI: 10.1016/j.matchemphys.2019.03.008
Google Scholar
[16]
I. Bsoula, S.H. Mahmood, Magnetic and structural properties of BaFe12-xGaxO19 nanoparticles, J. Alloy. Compd. 489 (2010) 110-114.
DOI: 10.1016/j.jallcom.2009.09.024
Google Scholar
[17]
Y. Yang, F. Wang, X, Liu, et al, Magnetic and microstructural properties of Al substituted M-type Ca-Sr hexaferrites, J. Magn. Magn. Mater. 421 (2017) 349-354.
DOI: 10.1016/j.jmmm.2016.08.034
Google Scholar
[18]
A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, et al, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites, Ceram. Int. 43 (2017) 12822–12827.
DOI: 10.1016/j.ceramint.2017.06.172
Google Scholar
[19]
E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27 (1991) 3475-3518.
DOI: 10.1109/tmag.1991.1183750
Google Scholar