[1]
Mizushima K, Jones P.C, Wiseman P.J, Goodenough J.B. LixCoO2 (0<x<l): a new cathode material for batteries of high energy density[J]. Material Research Bulletin, 1980, 15:783-789.
DOI: 10.1016/0025-5408(80)90012-4
Google Scholar
[2]
Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system[J] Solid state Ionics, Diffusion & Reactions, 1994,69(3):212-221.
DOI: 10.1016/0167-2738(94)90411-1
Google Scholar
[3]
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. [J] Nature Reviews Materials, 2016, 1: 4.
DOI: 10.1038/natrevmats.2016.13
Google Scholar
[4]
Su Y.F; Chen G; Chen L, et al. Exposing the {010} Planes by Oriented Self-Assembly with Nanosheets To Improve the Electrochemical Performances of Ni-Rich Li[Ni0.8Co0.1Mn0.1]O2 Microspheres.[J]Applied Chemical Society Journals. 2018, 10, 6407-6414.
DOI: 10.1021/acsami.7b18933.s001
Google Scholar
[5]
Duc-Luong V; Choi, J Y; Kim W B, et al. Layered LiNi0.8Co0.1Mn0.1O2 Prepared through Calcination in Air with Preoxidized Precursor. [J] Journal of the Electrochemical Society. 2017, 164: A2670-A2676.
DOI: 10.1149/2.1631712jes
Google Scholar
[6]
Wu H W, Pang X F, Bi J X, et al. Cellulose nanofiber assisted hydrothermal synthesis of Ni-rich cathode materials with high binding particles for lithium-ion batteries. [J] l 2020, 829: 154571.
DOI: 10.1016/j.jallcom.2020.154571
Google Scholar
[7]
Gao S, Zhan X W, Cheng Y T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries[J]. Journal of Power Sources. 2019, 410-411:45-52.
DOI: 10.1016/j.jpowsour.2018.10.094
Google Scholar
[8]
Su J D, Santhoshkumar P, Suk H K, et al. Al-Doped Li[Ni0.78Co0.1Mn0.1Al0.02]O2 for High Performance of Lithium Ion Batteries[J] Ceramics International, 2019, 45: 6972-6977.
DOI: 10.1016/j.ceramint.2018.12.196
Google Scholar
[9]
Yuan A, Tang H, Liu L, et al. High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries. [J] Journal of Alloys and Compounds. 2020, 844: 156210.
DOI: 10.1016/j.jallcom.2020.156210
Google Scholar
[10]
Dina B, Markus Br, Roman N, et al. Surface Modification of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries[J]. American Chemical Society, 2019, 11: 18404-18414.
DOI: 10.1021/acsami.9b02889.s001
Google Scholar
[11]
Huang Y P, Yao X, Hu X C, et al. Surface coating with Li-Ti-O to improve the electrochemical performance of Ni-rich cathode material[J]Applied Surface Science. 2019, 489: 913-921.
DOI: 10.1016/j.apsusc.2019.06.012
Google Scholar
[12]
Zhu W C, Huang X, Liu T, et al. Ultrathin Al2O3 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Material for Enhanced Cycle ability at Extended Voltage Ranges[J]Coatings.2019, 9: 92.
DOI: 10.3390/coatings9020092
Google Scholar
[13]
Xu X, Huo H, Jian J Y, et al. Radially Oriented Single-Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries[J] Advanced Energy Materials.2019, 9:1803963.
DOI: 10.1002/aenm.201803963
Google Scholar
[14]
Yongseon K. Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance as a Cathode Materialfor Lithium Ion Batteries[J]Applied Materials Interfaces. 2012, 4: 2329-2333.
DOI: 10.1021/am300386j
Google Scholar
[15]
Ryu W G, Shin H S, Park M S, et al . Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by surface tuning with phosphate. [J] Ceramics International. 2019, 45(11): 13942-13950.
DOI: 10.1016/j.ceramint.2019.04.092
Google Scholar