Infrared Switching of Self-Heating VO2/ITO Films for Smart Window

Article Preview

Abstract:

The unique metal to insulator transition (MIT) of vanadium dioxide (VO2) makes it receiving extensive attention in the application of smart window. As for VO2-based smart window, the critical transition temperature (Tc) is required to be reduced to near room temperature for practical applications. In this paper, we fabricated VO2 films on ITO glass by hydrothermal method and applied voltage to ITO, therefore, the joule heat generated by ITO triggered the complete MIT of VO2 at room temperature in very short time ~3 s with applied voltage of 12 V. The VO2 film on ITO substrate shows obviously widened hysteresis behavior in the reversible transition process with a thermal hysteresis width of ~33 °C. The widened hysteresis loop makes it possible to stabilize the rutile phase (R) of VO2 at room temperature via applying a low holding voltage of 6 V. The proposed VO2/ITO film exhibits promising application in active smart window, and possesses advantages of simple structure, easy-fabricated and low-cost.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1034)

Pages:

123-131

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Li, S. Magdassi, Y.F. Gao and Y. Long, Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows, Small (Weinheim an der Bergstrasse, Germany). (2017).

DOI: 10.1002/smll.201701147

Google Scholar

[2] Y.Y. Cui, Y.J. Ke, C. Liu, Z. Chen, N. Wang, L.M. Zhang, Y. Zhou, S.C. Wang, Y.F. Gao and Y. Long, Thermochromic VO2 for energy-efficient smart windows, Joule. 2 (2018) 1707-1746.

DOI: 10.1016/j.joule.2018.06.018

Google Scholar

[3] T.C. Chang, X. Cao, S.H. Bao, S.D. Ji, H.J. Luo and P. Jin, Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application, Advances in Manufacturing. 6 (2018) 1-19.

DOI: 10.1007/s40436-017-0209-2

Google Scholar

[4] R.Q. Liang, Y.Y. Sun, M. Aburas, R. Wilson and Y.P. Wu, Evaluation of the thermal and optical performance of thermochromic windows for office buildings in china, Energy and Buildings. 176 (2018) 216-231.

DOI: 10.1016/j.enbuild.2018.07.009

Google Scholar

[5] F.J. Morin, Oxides which show a metal-to-insulator transition at the neel temperature, Physical Review Letters. 3 (1959) 34-36.

DOI: 10.1103/physrevlett.3.34

Google Scholar

[6] D. Ruzmetov, K.T. Zawilski, S.D. Senanayake, V. Narayanamurti and S. Ramanathan, Infrared reflectance and photoemission spectroscopy studies across the phase transition boundary in thin film vanadium dioxide, Journal of Physics Condensed Matter. 20 (2008) 465204.

DOI: 10.1088/0953-8984/20/46/465204

Google Scholar

[7] J.B. Goodenough, The two components of the crystallographic transition in VO2, Journal of Solid State Chemistry. 3 (1971) 490-500.

DOI: 10.1016/0022-4596(71)90091-0

Google Scholar

[8] M.A. Warwick and R. Binions, Advances in thermochromic vanadium dioxide films, Journal of Materials Chemistry A. 2 (2014) 3275-3292.

DOI: 10.1039/c3ta14124a

Google Scholar

[9] L.L. Fan, S. Chen, Z.L. Luo, Q.H. Liu and Z.Y. Wu, Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation, Nano Letters. 14 (2014).

Google Scholar

[10] L. Dai, C.X. Cao, Y.F. Gao and H.J. Luo, Synthesis and phase transition behavior of undoped VO2 with a strong nano-size effect, Sol Energy Mater Sol Cells. 95 (2011) 712-715.

DOI: 10.1016/j.solmat.2010.10.008

Google Scholar

[11] B.S. Mun, et al. Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal, Applied Physics Letters. 103 (2013) 1039-342.

DOI: 10.1063/1.4817727

Google Scholar

[12] C.H. Griffiths, Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide, Journal of Applied Physics. 45 (1974) 2201-2206.

DOI: 10.1063/1.1663568

Google Scholar

[13] D. Vernardou, M.E. Pemble and D.W. Sheel, Tungsten‐doped vanadium oxides prepared by direct liquid injection mocvd, Chemical Vapor Deposition. 13 (2010) 158-162.

DOI: 10.1002/cvde.200606527

Google Scholar

[14] T.J. Hanlon, J.A. Coath and M.A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol gel method, Thin Solid Films. 436 (2003) 269-272.

DOI: 10.1016/s0040-6090(03)00602-3

Google Scholar

[15] C. Piccirillo, R. Binions and I.P. Parkin, Nb-doped VO2 thin films prepared by aerosol-assisted chemical vapour deposition, European Journal of Inorganic Chemistry. 25 (2007) 4050-4055.

DOI: 10.1002/ejic.200700284

Google Scholar

[16] J.J. Zhang, H.Y. He, Y. Xie and B.C. Pan, Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase, Journal of Chemical Physics. 141 (2014) 194707.

DOI: 10.1063/1.4901514

Google Scholar

[17] M. Li, S.L. Ji, J. Pan, H. Wu, L. Zhong, Q. Wang, F.D. Li and G.H. Li, Infrared response of self-heating VO2 nanoparticles film based on ag nanowires heater, Journal of Materials Chemistry A. 2 (2014) 20470-20473.

DOI: 10.1039/c4ta04738a

Google Scholar

[18] M. Li, H. Wu, L. Zhong, H. Wang, Y.Y. Luo and G.H. Li, Active and dynamic infrared switching of VO2 (M) nanoparticle film on ITO glass, Journal of Materials Chemistry C. 4 (2016) 1579-1583.

DOI: 10.1039/c5tc04046a

Google Scholar

[19] N. Shen, S. Chen, W.J. Wang, R. Shi, P.C. Chen, D.J. Kong, Y.X. Liang, A. Amini, J.B. Wang and C. Cheng, Joule heating driven infrared switching in flexible VO2 nanoparticle films with reduced energy consumption for smart windows, Journal of Materials Chemistry A. 7 (2019) 4516-4524.

DOI: 10.1039/c8ta11071a

Google Scholar

[20] H.F. Zhang, Z.M. Wu, C. Wang and Y. Sun, VO2 film with small hysteresis width and low transition temperature, Vacuum. 170 (2019) 108971.

DOI: 10.1016/j.vacuum.2019.108971

Google Scholar

[21] N. Wang, S.Y. Liu, X.T. Zeng, S. Magdassi and Y. Long, Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature, Journal of Materials Chemistry C. 3 (2015) 6771-6777.

DOI: 10.1039/c5tc01062d

Google Scholar

[22] T.D. Manning, I.P. Parkin, R.J.H. Clark, D. Sheel, M.E. Pemble and D. Vernadou, Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides, Journal of Materials Chemistry. 12 (2002) 2936-2939.

DOI: 10.1039/b205427m

Google Scholar

[23] G. Silversmit, D. Depla, H. Poelman, G.B. Marin and R.D. Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), Journal of Electron Spectroscopy & Related Phenomena. 135 (2004) 167-175.

DOI: 10.1016/j.elspec.2004.03.004

Google Scholar

[24] Y.X. Guo, Y.F. Liu, C.W. Zou, Z.M. Qi, Y.Y. Wang, Y.Q. Xu, X.L. Wang, F. Zhang and R. Zhou, Oxygen pressure induced structure, morphology and phase-transition for VO2/c-sapphire films by PLD, Applied Physics A. 115 (2014) 561.

DOI: 10.1007/s00339-013-7972-0

Google Scholar

[25] S.Y. Li, G.A. Niklasson and C.G. Granqvist, Thermochromic fenestration with VO2-based materials: three challenges and how they can be met, Thin Solid Films. 520 (2012) 3823-3828.

DOI: 10.1016/j.tsf.2011.10.053

Google Scholar

[26] G.X. Tong, et al. Thermal oxidation-grown vanadium dioxide thin films on FTO (Fluorine-doped tin oxide) substrates, Infrared Physics & Technology. 61 (2013) 37-41.

DOI: 10.1016/j.infrared.2013.07.003

Google Scholar

[27] W.J. Li, S.D. Ji, K. Qian and P. Jin, Preparation and characterization of VO2(M)–SnO2 thermochromic films for application as energy-saving smart coatings, Journal of Colloid and Interface Science. 456 (2015) 166-173.

DOI: 10.1016/j.jcis.2015.06.013

Google Scholar

[28] R.A. Aliev, V.N. Andreev, V.M. Kapralova, V.A. Klimov, A.I. Sobolev and E.B. Shadrin, Effect of grain sizes on the metal-semiconductor phase transition in vanadium dioxide polycrystalline thin films, Physics of the Solid State. 48 (2006) 929-934.

DOI: 10.1134/s1063783406050180

Google Scholar

[29] R. Lopez, L.A. Boatner, T.E. Haynes, R.F. Haglund and L.C. Feldman, Enhanced hysteresis in the semiconductor-to-metal phase transition of VO2 precipitates formed in SiO2 by ion implantation, Applied Physics Letters. 79 (2001) 3161-3163.

DOI: 10.1063/1.1415768

Google Scholar

[30] H.T. Zong, C.C. Geng, C. Zhang, H.H. Liu, J.B. Wu, Z.B. Yu, G.H. Cao, C.Y. Kang and M. Li, Tuning the electrical and optical properties of ZrxOy/VO2 thin films by controlling the stoichiometry of ZrxOy buffer layer, Applied Surface Science. 487 (2019) 138-145.

DOI: 10.1016/j.apsusc.2019.04.115

Google Scholar

[31] M. Guntersdorfer, Die Leitfähigkeitsanomale in Vanadiumdioxid, Solid-State Electron. 13 (1970) 355-366.

DOI: 10.1016/0038-1101(70)90186-3

Google Scholar

[32] L.T. Kang, Y.F. Gao, Z.T. Zhang, J. Du, C.X. Cao, Z. Chen and H.J. Luo, Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution, Journal of Physical Chemistry C. 114 (2010) 1901-1911.

DOI: 10.1021/jp909009w

Google Scholar

[33] Z.T. Zhang, Y.F. Gao, H.J. Luo, L.T. Kang, Z. Chen, J. Du, M. Kanehira, Y.Z. Zhang and Z.L. Wang, Solution-based fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications, Energy & Environmental Science. 4 (2011) 4290-4297.

DOI: 10.1039/c1ee02092g

Google Scholar

[34] R.A. Aliev and V.A. Klimov, Effect of synthesis conditions on the metal-semiconductor phase transition in vanadium dioxide thin films, Physics of the Solid State. 46 (2004) 532-536.

DOI: 10.1134/1.1687874

Google Scholar

[35] V.A. Klimov, I.O. Timofeeva, S.D. Khanin, E.B. Shadrin, A.V. Ilinskii and F. Silva-Andrade, Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films, Technical Physics. 47 (2002) 1134-1139.

DOI: 10.1134/1.1508078

Google Scholar

[36] S. Kumar, F. Maury, Naoufal and Bahlawane, Electrical switching in semiconductor-metal self-assembled VO2 disordered metamaterial coatings, Scientific Reports. 6 (2016) 37699.

DOI: 10.1038/srep37699

Google Scholar

[37] J.P. Pouget, H. Launois, J.P. D'Haenens, P. Merenda and T.M. Ric, Electron localization induced by uniaxial stress in pure VO2, Phys. Rev. Lett. 35 (1975) 873-875.

DOI: 10.1103/physrevlett.35.873

Google Scholar

[38] M. Marezio, D.B. McWhan, J.P. Remeika and P.D. Dernier, Structural aspects of the metal-insulator transitions in Cr-doped VO2, Phys. Rev. B. 5 (1972) 2541.

DOI: 10.1103/physrevb.5.2541

Google Scholar

[39] R. Basu, V. Srihari, M. Sardar, S.K. Srivastava and S. Dhara, Probing phase transition in VO2 with the novel observation of low-frequency collective spin excitation, Scientific Reports. 10 (2020) (1977).

DOI: 10.1038/s41598-020-58813-x

Google Scholar

[40] M.M. Qazilbash et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging, Science. 318 (2007) 1750-1753.

Google Scholar