[1]
L. Courtois, E. Maire, M. Perez, D. Rodney, O, Bouaziz, Y, Brechet, Mechanical Properties of Monofilament Entangled Materials, Adv. Eng. Mater. 14 (2012) 1128-1133.
DOI: 10.1002/adem.201100356
Google Scholar
[2]
P. Liu, Q. Tan, L. Wu, G. He, Compressive and pseudo-elastic hysteresis behavior of entangled titanium wire materials, Mat. Sci. Eng. A 527 (2010) 3301-3309.
DOI: 10.1016/j.msea.2010.02.071
Google Scholar
[3]
G. He, P. Liu, Q. Tan, Porous titanium materials with entangled wire structure for load-bearing biomedical applications, J. Mech. Behav. Biomed. 5 (2012) 16-31.
DOI: 10.1016/j.jmbbm.2011.09.016
Google Scholar
[4]
G. He, P. Liu, Q. Tan, G. Jiang, Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications, J. Mech. Behav. Biomed. 28 (2013) 309-319.
DOI: 10.1016/j.jmbbm.2013.08.016
Google Scholar
[5]
Y. Liu, G. Jiang, G. He, Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications, Mater. Sci. Eng. C 61 (2016) 37-41.
DOI: 10.1016/j.msec.2015.12.018
Google Scholar
[6]
Y. Ma, W. Hu, D. Zhang, Q. Zhang, J. Hong, Tunable mechanical characteristics of a novel soft magnetic entangled metallic wire material, Smart. Mater. Struct. 25 (2016) 095015.
DOI: 10.1088/0964-1726/25/9/095015
Google Scholar
[7]
Y. Ma, Q. Zhang, D. Zhang, W. Hu, J. Hong, Experimental investigation on the dynamic mechanical properties of soft magnetic entangled metallic wire material, Smart. Mater. Struct. 26 (2017) 055019.
DOI: 10.1088/1361-665x/aa68b2
Google Scholar
[8]
X. Xue, P. Yang, Y. Shao, H. Bai, Manufacture technology and anisotropic behaviour of elastic-porous metal rubber, Int. J. Light. Mater. Manuf. 3 (2020) 88-99.
DOI: 10.1016/j.ijlmm.2019.08.005
Google Scholar
[9]
P. Yang, H. Bai, X. Xue, K. Xiao, X. Zhao, Vibration reliability characterization and damping capability of annular periodic metal rubber in the non-molding direction, Mech. Syst. Signal. Pr. 132 (2019) 622-639.
DOI: 10.1016/j.ymssp.2019.07.020
Google Scholar
[10]
Y. Zhao, W. Yang, Y. Tan, S. Li, X. Zeng, Z. Liu, B.C.K Tee, Highly conductive 3D metal-rubber composites for stretchable electronic applications, J. Technol. 7 (2019) 031508.
DOI: 10.1063/1.5083942
Google Scholar
[11]
J. Hou, Z. Liu, H. Bai, J. Yang, D. Li, Experimental study of metal rubber's electric resistance based on sintering by electric impulse discharge, Mech. Sci. Technol. 25 (2006) 753-756.
Google Scholar
[12]
Y. Ma, Q. Zhang, D. Zhang, F. Scarpa, D. Gao, J. Hong, Size-dependent mechanical behavior and boundary layer effects in entangled metallic wire material systems, J. Mater. Sci. 52 (2016) 3741-3756.
DOI: 10.1007/s10853-016-0478-3
Google Scholar
[13]
Y. Ma, D. Gao, D. Zhang, J. Hong, Compressive and dissipative behavior of metal rubber under constraints, Phys. Status. Solidi. B 252 (2015) 1675-1681.
DOI: 10.1002/pssb.201451617
Google Scholar
[14]
Y. Wang, H. Bai, J. Hou, Fatigue damage properties of metal rubber materials, J. Mech. Eng. 47 (2011) 65-71.
Google Scholar
[15]
R. Chandra, S.P. Singh, K. Gupta, Damping studies in fiber-reinforced composites – a review, Compos. Struct. 46 (1999) 41-51.
DOI: 10.1016/s0263-8223(99)00041-0
Google Scholar
[16]
S. Nambu, M. Michiuchi, J. Inoue, T. Koseki, Effect of interfacial bonding strength on tensile ductility of multilayered steel composites, Compos. Sci. Technol. 69 (2009) 1936-1941.
DOI: 10.1016/j.compscitech.2009.04.013
Google Scholar