[1]
H. Wang, M. Su, H. Hao. The quasi-static axial compressive properties and energy absorption behavior of ex-situ ordered aluminum cellular structure filled tubes, Compos. Struct. 239 (2020) 112039.
DOI: 10.1016/j.compstruct.2020.112039
Google Scholar
[2]
J. Zhang, L. Chen, H. Wu, Q. Fang, Y. Zhang. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading, Compos. Struct. 241 (2020) 110859.
DOI: 10.1016/j.compstruct.2019.04.031
Google Scholar
[3]
A. Daoud. Effect of fly ash addition on the structure and compressive properties of 4032-fly ash particle composite foams, J. Alloys Compd. 487.487 (2009) 618-625.
DOI: 10.1016/j.jallcom.2009.08.026
Google Scholar
[4]
Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa. Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing, Mater. Sci. Eng. A. 534 (2012) 716-719.
DOI: 10.1016/j.msea.2011.11.100
Google Scholar
[5]
S. He, Y. Lv, S. Chen, G. Dai, J. Liu, M. Huo. Gradient regulation and compressive properties of density-graded aluminum foam, Mater. Sci. Eng. A. 772 (2020) 138658.
DOI: 10.1016/j.msea.2019.138658
Google Scholar
[6]
Y. Zhang, X. Zang, K. Wang, S. He, J. Liu, W. Zhao, X. Gong, J. Yu. Fabrication of functionally radial graded metallic foam, Mater. Lett. 264 (2020) 127292.
Google Scholar
[7]
Y. Duan, X. Zhao, B. Du, X. Shi, H. Zhao, B. Hou, Y. Li. Quasi-static compressive behavior and constitutive model of graded foams, Int. J. Mech. Sci. 177 (2020) 105603.
DOI: 10.1016/j.ijmecsci.2020.105603
Google Scholar
[8]
N. Movahedi, G. Murch, I. Belova, T. Fiedler. Functionally graded metal syntactic foam: Fabrication and mechanical properties, Mater. Des. 168 (2019) 107652.
DOI: 10.1016/j.matdes.2019.107652
Google Scholar
[9]
N. Movahedi, S. Conway, I. Belova, G. Murch, T. Fiedler. Influence of particle arrangement on the compression of functionally graded metal syntactic foams, Mater. Sci. Eng. A. 764 (2019) 138242.
DOI: 10.1016/j.msea.2019.138242
Google Scholar
[10]
S. Broxtermann, M. Taherishargh, I. Belova, G. Murch, T. Fiedler. On the compressive behaviour of high porosity expanded Perlite-Metal Syntactic Foam (P-MSF), J. Alloys Compd. 691 (2017) 690-697.
DOI: 10.1016/j.jallcom.2016.08.284
Google Scholar
[11]
T. Fiedler, N. Movahedi, L. York, S. Broxtermann. Functionally-graded metallic syntactic foams produced via particle pre-compaction, Metals, 10.3 (2020) 314.
DOI: 10.3390/met10030314
Google Scholar
[12]
M. Su, H. Wang, H. Hao. Compressive properties of aluminum matrix syntactic foams prepared by stir casting method, Adv. Eng. Mater. 21.8 (2019) 1900183.
DOI: 10.1002/adem.201900183
Google Scholar
[13]
M. Su, H. Wang, H. Hao, T. Fiedler. Compressive properties of expanded glass and alumina hollow spheres hybrid reinforced aluminum matrix syntactic foams, J. Alloys Compd. 821 (2020) 153233.
DOI: 10.1016/j.jallcom.2019.153233
Google Scholar