[1]
Tong Meng, Fu Caian, Ji Kun, et al. Preparation and performance test of Al based SiC substrate for IGBT. Hot working process, 2014, 43 (10): 121-124.
Google Scholar
[2]
Li S, Xiong D, Liu M, et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceramics International, 2014, 40(5): 7539-7544.
DOI: 10.1016/j.ceramint.2013.12.105
Google Scholar
[3]
ELOMARI S, BOUKHILI R, SAN MARCHI C, et al. Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites[J]. Journal of Materials Science, 1997,32(8): 2131-2140.
DOI: 10.1023/a:1018535108269
Google Scholar
[4]
Liu Q, Wang F, Shen W, et al. Influence of interface thermal resistance on thermal conductivity of SiC/Al composites. Ceramics International, 2019, 45(17): 23815-23819.
DOI: 10.1016/j.ceramint.2019.07.358
Google Scholar
[5]
Qiu Feng, Tong Haotian, Shen Ping, et al. Review: evolution law and mechanism of SiC/Al interface reaction and interface structure. Acta metallurica Sinica, 2019, 55 (01): 87-100.
Google Scholar
[6]
Cui Yan, Xiang junfan, Cao Leigang, et al. Effect of SiC particle surface adsorbate on the preparation and mechanical properties of aluminum matrix composites. Materials engineering, 2019, 47 (04): 160-166.
Google Scholar
[7]
Liu Q, Wang F, Qiu X, et al. Effects of La and Ce on microstructure and properties of SiC/Al composites. Ceramics International, 2020,46(1):1232-1235.
DOI: 10.1016/j.ceramint.2019.09.040
Google Scholar
[8]
Tumbleston J R, Shirvanyants D, Ermoshkin N. Additive manufacturing. Continuous liquid interface production of 3D objects. Science Letter, 2015, 347(6228): 1349.
DOI: 10.1126/science.aaa2397
Google Scholar
[9]
Yang Jianming, Tang Yang, Gu Hai, et al. Research and application status of porous structure prepared by 3D printing. Materials guide, 2018, 32 (15): 2672-2682.
Google Scholar
[10]
Long Han. Study on Preparation and pore characteristics of SiCp. South China University of technology, (2016).
Google Scholar
[11]
Shen X, Ren S, He X, et al. Study on methods to strengthen SiC preforms for SiCp/Al composites by pressureless infiltration. Journal of Alloys and Compounds, 2009, 468(1-2): 158-163.
DOI: 10.1016/j.jallcom.2008.01.022
Google Scholar
[12]
Chu K, Jia C, Liang X, et al. The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: Experimental study and modeling. Materials & Design, 2009, 30(9): 3497-3503.
DOI: 10.1016/j.matdes.2009.03.009
Google Scholar
[13]
Molina J M, Narciso J, Weber L, et al. Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution. Materials Science and Engineering: A, 2008, 480 (1-2): 483-488.
DOI: 10.1016/j.msea.2007.07.026
Google Scholar
[14]
Piñero E, Molina J M, Narciso J, et al. The Intrinsic Permeability of Packed SiC Particles with Monomodal and Bimodal Size Distributions. Journal of Composite Materials, 2008, 42(26): 2795-2804.
DOI: 10.1177/0021998308096502
Google Scholar
[15]
Hong Yu. Preparation and properties of SiC/Al composites with double size particles by pressureless infiltration. Hefei University of technology, (2009).
Google Scholar
[16]
Molina-Jordá J M. Nano- and micro-/meso-scale engineered magnesium/diamond composites: Novel materials for emerging challenges in thermal management. Acta Materialia, 2015, 96: 101-110.
DOI: 10.1016/j.actamat.2015.06.003
Google Scholar
[17]
Liu J, Zheng Z, Wang J, et al. Pressureless infiltration of liquid aluminum alloy into SiC preforms to form near-net-shape SiC/Al composites. Journal of Alloys and Compounds, 2008, 465(1-2): 239-243.
DOI: 10.1016/j.jallcom.2007.10.055
Google Scholar
[18]
Peng Jialin. Study on Preparation of SiCp porous preform and vacuum pressure infiltration of molten aluminum. South China University of technology, (2017).
Google Scholar
[19]
GANERIWALA R, ZOHDI T I. A coupled discrete element-finite difference model of selective laser sintering. Granular Matter, 2016, 18(2): 21-36.
DOI: 10.1007/s10035-016-0626-0
Google Scholar
[20]
WILKES J, HAUEDORN Y, W M. Additive manufacturing of ZrO2-A12O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51-57.
DOI: 10.1108/13552541311292736
Google Scholar
[21]
FINA F, GOYANES A, GAISFORD S. Selective laser sintering (SLS) 3D printing of medicines. International Journal of Pharmaceutics, 2017, 529(1): 258-293.
DOI: 10.1016/j.ijpharm.2017.06.082
Google Scholar
[22]
Xu Zhifeng, Yu Huan, Zheng Yuhui, et al. Selective laser sintering and vacuum pressure Aluminizing of SiC Ceramic preforms. Acta nonferrous metals Sinica, 2008 (10): 1864-1871.
Google Scholar
[23]
Ji Hongchao, Zhang Xuejing, Pei weichi, et al. Progress in ceramic 3D printing technology and materials. Materials engineering, 2018, 46 (07): 19-28.
Google Scholar
[24]
UTELA B, STORTI D, ANDERSON R. A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes, 2008, 10(2): 96-104.
DOI: 10.1016/j.jmapro.2009.03.002
Google Scholar
[25]
Cheng Siyang. Research on gel injection molding of high volume fraction SiCp/Al composite preform. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), (2019).
Google Scholar
[26]
Wang Y, Jia C. Research of preparation and properties of SiC ceramic slurry of low viscosity and high solid content. Modern Machinery, 2015, 2015(04): 91-93.
Google Scholar
[27]
Yang Xiaoqian. Preparation of silicon carbide particle reinforced aluminum matrix composites by gel injection molding. Shenyang Ligong University, (2013).
Google Scholar
[28]
Y C, L G, K Y Z. A new advance in the development of high performance SiCp/Al composite. Mater Sci, 1997, 13(3): 227-229.
Google Scholar
[29]
Sun Xiaoye. Process and properties of SiCp/Al composites for electronic packaging prepared by pressureless infiltration method. Nanjing University of Aeronautics and Astronautics, (2012).
Google Scholar
[30]
Zhang Qiang, Jiang Longtao, Wu Gaohui. Preparation of Oxidized SiC Particle Reinforced Aluminum Matrix Composite by Pressureless Infiltration Method. Journal of Inorganic Materials, 2012, 27(04): 353-357.
DOI: 10.3724/sp.j.1077.2012.00353
Google Scholar
[31]
Ren S, He X, Qu X, et al. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites[J]. Composites Science and Technology, 2007, 67(10): 2103-2113.
DOI: 10.1016/j.compscitech.2006.11.006
Google Scholar
[32]
Hosseini Monazzah A, Pouraliakbar H, Bagheri R, et al. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms. Composites Part B: Engineering, 2017, 125.
DOI: 10.1016/j.compositesb.2017.05.055
Google Scholar
[33]
Zhang Z, Ge B, Xie W, et al. Effect of Si alloying content on the microstructure and thermophysical properties of SiC honeycomb/Al–Mg–Si composites prepared by spontaneous infiltration. Ceramics International, 2020, 46(8): 10934-10941.
DOI: 10.1016/j.ceramint.2020.01.108
Google Scholar
[34]
Liu Qiuyuan, Wang Feng, He Zhiyong, et al. Preparation of high volume fraction SiC/Al composites by pressureless infiltration method. Rare Metal Materials and Engineering, 2018, 47(S1): 315-318.
Google Scholar
[35]
Cui Yan, Guo Shun, Zhao Huiyou. High-volume SiCp/Al composite material core method pressureless infiltration near net shape preparation technology[J]. Journal of Aeronautical Materials, 2010, 30(6): 51-56.
Google Scholar
[36]
Wang D, Zheng Z, Lv J, et al. Multimodal particle distribution in 3D-SiC/Al-Si-Mg interpenetrating composite fabricated by pressureless infiltration. Ceramics International, 2018, 44 (16): 19851-19858.
DOI: 10.1016/j.ceramint.2018.07.245
Google Scholar
[37]
Wang Q, Min F, Zhu J. Microstructure and thermo-mechanical properties of SiCp/Al composites prepared by pressureless infiltration. Journal of Materials Science: Materials in Electronics, 2013, 24 (6): 1937-1940.
DOI: 10.1007/s10854-012-1037-6
Google Scholar
[38]
Zhang Q, Ma X, Wu G. Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique. Ceramics International, 2013, 39(5): 4893-4897.
DOI: 10.1016/j.ceramint.2012.11.082
Google Scholar
[39]
Wang X G, Ren H Y, Zhu M, et al. The Research of β-SiCp/Al Electronic Packaging Composites Fabricated by Pressureless Infiltrating. Advanced Materials Research, 2012, 490-495: 3816-3821.
DOI: 10.4028/www.scientific.net/amr.490-495.3816
Google Scholar
[40]
Gong Yanni. Research on Numerical Simulation of Vacuum Pressure Infiltration of SiC/Al Composites. Beijing Institute of Technology, (2015).
Google Scholar
[41]
Chen Yixin, Wang Richu, Wang Xiaofeng, et al. Effect of Mg on the microstructure and properties of vacuum pressure infiltration SiCp/Al composites. The Chinese Journal of Nonferrous Metals, 2016, 26(6): 1228-1234.
Google Scholar
[42]
Beffort O, Long S, Cayron C, et al. Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration. Composites Science and Technology, 2007, 67(3-4): 737-745.
DOI: 10.1016/j.compscitech.2006.04.005
Google Scholar
[43]
Weber L, Weber L, Sinicco G, et al. Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution. Journal of Materials Science, 2010, 45(8): 2203-2209.
DOI: 10.1007/s10853-009-4060-0
Google Scholar
[44]
Lee J, Lee S, Hong S, et al. Microstructures and thermal properties of A356/SiCp composites fabricated by liquid pressing method. Materials & Design, 2012, 37: 313-316.
DOI: 10.1016/j.matdes.2012.01.023
Google Scholar