[1]
A.L. Moore, L. Shi. Emerging challenges and materials for thermal management of electronics. Materials Today. 2014, 17 (4): 163-174.
DOI: 10.1016/j.mattod.2014.04.003
Google Scholar
[2]
L.H. Wang, J.W. Li, H.L. Zhong, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Compos Part A: Appl Sci Manufac. 2018, 113: 76-82.
DOI: 10.1016/j.compositesa.2018.07.023
Google Scholar
[3]
T. Ying, M.Y. Zheng, Z.T. Li, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Zn alloys. J Alloys Compd. 2015, 621: 250-255.
DOI: 10.1016/j.jallcom.2014.09.199
Google Scholar
[4]
T. Guo, X. Zhou, L.Q. xia, et al. Effects of Si content and Ca modification on microstructure and thermal expansion property of Mg-Si alloys. Mater Chem Phys. 2020, 253.
DOI: 10.1016/j.matchemphys.2020.123260
Google Scholar
[5]
A. Lipp, K.A. Schwetz. K. Hunold. Hexagonal boron nitride: fabrication, properties and applications. J Eur Ceram Soc. 1989, 5: 3-9.
Google Scholar
[6]
B.H. Xie, X. Huang, G.J. Zhang. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos Sci Technol. 2013, 85: 98-103.
DOI: 10.1016/j.compscitech.2013.06.010
Google Scholar
[7]
K. Kim, M. Kim, Y. Hwang, et al. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int. 2014, 40(1): 2047-2056.
DOI: 10.1016/j.ceramint.2013.07.117
Google Scholar
[8]
D.Q. Wan, X.Z. Wu, W. Zhang, et al. Thermal conductivity and thermal expansion of few-layer h-BN/Cu composites. Mater Res Bull. 2019, 120.
DOI: 10.1016/j.materresbull.2019.110606
Google Scholar
[9]
Y. Huang, Y. Su, X. Guo, et al. Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management, J Alloy Comp. 2017, 711: 22-30.
DOI: 10.1016/j.jallcom.2017.03.233
Google Scholar
[10]
N. Yasuda, S. Kimura. Measurement of thermal expansion coefficient of 18R-synchronized long-period stacking ordered magnesium alloy. Mater Trans. 2016, 57(6): 1010-1013.
DOI: 10.2320/matertrans.m2016078
Google Scholar
[11]
A. Inoue, Y. Kawamura, M. Matsushita, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. J Mater Res. 2001, 16(7): 1894-1900.
DOI: 10.1557/jmr.2001.0260
Google Scholar
[12]
X. Yang, S.S. Wu, et al. Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure. J Alloy Comp. 2017, 726: 276-283.
DOI: 10.1016/j.jallcom.2017.08.003
Google Scholar
[13]
M. Yamasaki, Y. Kawamura. Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase. Scripta Mater. 2009, 60(4): 264-267.
DOI: 10.1016/j.scriptamat.2008.10.022
Google Scholar
[14]
L.P. Zhong, J. Peng, S. Sun, et al. Microstructure and thermal conductivity of as-cast and as-solutionized Mg-Rare Earth binary alloys. J Mater Sci Technol. 2017, 33: 1240-1248.
DOI: 10.1016/j.jmst.2016.08.026
Google Scholar