[1]
Koh, J.J., Zhang, X., He,C., Fully biodegradable poly(lacticacid) /starch blends: a review of toughening strategies.Int.J.Biol.Macromol.109(2018) 99–113.
DOI: 10.1016/j.ijbiomac.2017.12.048
Google Scholar
[2]
Tok, Y., Cal, B., Ugwu, C., etl., Biodegradability of plastics. Int. J. Mol. Sci.10(2009),3722–3742.
Google Scholar
[3]
Akra, M., Gha, I., Azizi, H., etl. A new approach in compatibilization of the poly (lactic acid)/ thermoplastic starch (PLA/TPS) blends. Carbohydr.Polym.144 (2016) 254–262.
DOI: 10.1016/j.carbpol.2016.02.035
Google Scholar
[4]
Müller, P., Bere, J., Fekete, E., etl. Interactions, structure and properties in PLA/plastici-zed starch blends. Poly. (Guildf.) 103(2016) 9–18.
DOI: 10.1016/j.polymer.2016.09.031
Google Scholar
[5]
Mar, C., Vil, F., Silva, A.S., etl. Active polylactic acid film incorporated with green tea extract: development, characterization and effectiveness. Ind. Crops Prod. 123(2018) 100–110.
DOI: 10.1016/j.indcrop.2018.06.056
Google Scholar
[6]
Briassoulis, D., An over view on the mechanical behaviour of biodegradable agricultural films. J. Polym.Environ.12(2004) 65–81.
Google Scholar
[7]
Palai, B., Biswal, M., Mohanty, S., etl. In situ reactive compatibilization of polylactic a-cid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind. Crops Prod., 141(2019).111748.
DOI: 10.1016/j.indcrop.2019.111748
Google Scholar
[8]
Yu, L., Dean, K., Li, L., Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31(2006) 576–602.
DOI: 10.1016/j.progpolymsci.2006.03.002
Google Scholar
[9]
Ke, T., Sun, X., Effects of moisture content and heat treatment on the physical properties of starch and poly (lactic acid) blends. J. Appl. Polym. Sci. 81(2001) 3069–3082.
DOI: 10.1002/app.1758
Google Scholar
[10]
Ayana, B., Suin, S., Khatua, B.B., Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Car. Poly. 110(2014)430–439.
DOI: 10.1016/j.carbpol.2014.04.024
Google Scholar
[11]
Müller, C.M.O., Pires, A.T.N., Yamashita, F., Characterization of thermoplastic starch/poly (lactic acid) blends obtained by extrusion and thermopressing. J. Braz. Chem. Soc. 23(2012)426–434.
DOI: 10.1590/s0103-50532012000300008
Google Scholar
[12]
Woo, J., Ka, P., Som, N., Kosi, A., etl. Preparation of modified starch-grafted poly (lactic acid) and a study on compatibilizing efficacy of the copolymers in poly (lactic acid)/thermoplastic starch blends. J. Appl. Polym. Sci. 126(2012) 389–396.
DOI: 10.1002/app.36896
Google Scholar
[13]
Yang, Y., Tang, Z., Xiong, Z., Zhu, J., Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid). Int. J. Biol. Macromol. 77(2015)273–279.
DOI: 10.1016/j.ijbiomac.2015.03.053
Google Scholar
[14]
Koh, J.J., Zhang, X., He, C., Fully biodegradable poly (lactic acid)/starch blends: a review of toughening strategies. Int. J. Biol. Macromol.109(2018) 99–113.
DOI: 10.1016/j.ijbiomac.2017.12.048
Google Scholar
[15]
Shi, Q., Chen, C., Gao, L., etl. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym. De. and Stab. 96(1) (2011) 175–182.
DOI: 10.1016/j.polymdegradstab.2010.10.002
Google Scholar
[16]
Tsui, A., Wright, Z. C., & Frank, C. W. Biodegradable polyesters from renewable reso-urces. Annual Review of Chemical and Biomolecular Engineering, 4.1(2013):143.
DOI: 10.1146/annurev-chembioeng-061312-103323
Google Scholar
[17]
Averous, L. Biodegradable multiphase systems based on plasticized starch: a review. J. of Macro. Sci.—Polym. Re. C44(3) (2004) 231–274.
Google Scholar
[18]
Ren, J., Fu, H., Ren, T., & Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbo. Polym., 77(3) (2009) 576–582.
DOI: 10.1016/j.carbpol.2009.01.024
Google Scholar
[19]
Oromiehie, A. R., Lari, T. T., & Rabiee, A. Physical and thermal mechanical properties of corn starch/LDPE composites. J. of Appl. Polym. Sci. 127(2) (2013) 1128–1134.
DOI: 10.1002/app.37877
Google Scholar
[20]
J. Dudowicz, J.F. Douglas, K.F. Freed, Two glass transitions in miscible polymer blends. J. Chem. Phys. 140 (24) (2014) 244905.
DOI: 10.1063/1.4884123
Google Scholar
[21]
Chi. Naka., Effects of Molecular Weight on the Melting and Crystallization of Poly(L-lactic acid) in a Mixture with Poly(ethylene oxide), Polym. J., 28(7) (1996) 568-575.
DOI: 10.1295/polymj.28.568
Google Scholar
[22]
Cartier, L., Okihara, T., Ikada, Y., etl. Epitaxial crystallization and crystalline polymorphism of polylactides. Polym. (Guildf). 41(2000)8909–8919.
DOI: 10.1016/s0032-3861(00)00234-2
Google Scholar
[23]
Tábi, T., Sajó, I.E., Szabó, F., etl. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym. Lett. 4 (2010) 659–668.
DOI: 10.3144/expresspolymlett.2010.80
Google Scholar
[24]
A. Przybytek, M. Sienkiewicz, J. Kucińska-Lipka, H. Janik,Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions,Indus. Cro. & Pro., 122(2018) 375-383.
DOI: 10.1016/j.indcrop.2018.06.016
Google Scholar
[25]
Mad. Nam., K., Nair, N.R., John, R.P., An overview of the recent developments in polylactide (PLA) research. Bio. Technol. 101(2010) 8493–8501.
DOI: 10.1016/j.biortech.2010.05.092
Google Scholar