Effect of Different Molecular Weight of PEG on the Crystallization Behaviors of Binary Polymer Blends PLA/TPS

Article Preview

Abstract:

Serial poly (lactic acid) (PLA) and thermoplastic starch (TPS) blends (with a fixed content of 20 wt.% TPS) were prepared by melt extrusion process. The effect of different molecular weight of PEG on the thermal and rheological properties of PLA/TPS blends was studied by the melt flow rate (MFR) and DSC analysis. The results showed that the molecular weight of PEG influenced the miscibility and crystallization behavior of PLA/TPS blends. Blend added with PEG400 showed a single Tg, and blends with PEG600 provided remarkable improvement of rheological properties with an increase in flow rate to 49.02 g/10 min. 4% content of poly (ethylene glycol) (PEG) can positively contribute to improve crystallization rate of PLA by reducing the melting temperature and cold crystallization temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

918-924

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Koh, J.J., Zhang, X., He,C., Fully biodegradable poly(lacticacid) /starch blends: a review of toughening strategies.Int.J.Biol.Macromol.109(2018) 99–113.

DOI: 10.1016/j.ijbiomac.2017.12.048

Google Scholar

[2] Tok, Y., Cal, B., Ugwu, C., etl., Biodegradability of plastics. Int. J. Mol. Sci.10(2009),3722–3742.

Google Scholar

[3] Akra, M., Gha, I., Azizi, H., etl. A new approach in compatibilization of the poly (lactic acid)/ thermoplastic starch (PLA/TPS) blends. Carbohydr.Polym.144 (2016) 254–262.

DOI: 10.1016/j.carbpol.2016.02.035

Google Scholar

[4] Müller, P., Bere, J., Fekete, E., etl. Interactions, structure and properties in PLA/plastici-zed starch blends. Poly. (Guildf.) 103(2016) 9–18.

DOI: 10.1016/j.polymer.2016.09.031

Google Scholar

[5] Mar, C., Vil, F., Silva, A.S., etl. Active polylactic acid film incorporated with green tea extract: development, characterization and effectiveness. Ind. Crops Prod. 123(2018) 100–110.

DOI: 10.1016/j.indcrop.2018.06.056

Google Scholar

[6] Briassoulis, D., An over view on the mechanical behaviour of biodegradable agricultural films. J. Polym.Environ.12(2004) 65–81.

Google Scholar

[7] Palai, B., Biswal, M., Mohanty, S., etl. In situ reactive compatibilization of polylactic a-cid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind. Crops Prod., 141(2019).111748.

DOI: 10.1016/j.indcrop.2019.111748

Google Scholar

[8] Yu, L., Dean, K., Li, L., Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31(2006) 576–602.

DOI: 10.1016/j.progpolymsci.2006.03.002

Google Scholar

[9] Ke, T., Sun, X., Effects of moisture content and heat treatment on the physical properties of starch and poly (lactic acid) blends. J. Appl. Polym. Sci. 81(2001) 3069–3082.

DOI: 10.1002/app.1758

Google Scholar

[10] Ayana, B., Suin, S., Khatua, B.B., Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Car. Poly. 110(2014)430–439.

DOI: 10.1016/j.carbpol.2014.04.024

Google Scholar

[11] Müller, C.M.O., Pires, A.T.N., Yamashita, F., Characterization of thermoplastic starch/poly (lactic acid) blends obtained by extrusion and thermopressing. J. Braz. Chem. Soc. 23(2012)426–434.

DOI: 10.1590/s0103-50532012000300008

Google Scholar

[12] Woo, J., Ka, P., Som, N., Kosi, A., etl. Preparation of modified starch-grafted poly (lactic acid) and a study on compatibilizing efficacy of the copolymers in poly (lactic acid)/thermoplastic starch blends. J. Appl. Polym. Sci. 126(2012) 389–396.

DOI: 10.1002/app.36896

Google Scholar

[13] Yang, Y., Tang, Z., Xiong, Z., Zhu, J., Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid). Int. J. Biol. Macromol. 77(2015)273–279.

DOI: 10.1016/j.ijbiomac.2015.03.053

Google Scholar

[14] Koh, J.J., Zhang, X., He, C., Fully biodegradable poly (lactic acid)/starch blends: a review of toughening strategies. Int. J. Biol. Macromol.109(2018) 99–113.

DOI: 10.1016/j.ijbiomac.2017.12.048

Google Scholar

[15] Shi, Q., Chen, C., Gao, L., etl. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym. De. and Stab. 96(1) (2011) 175–182.

DOI: 10.1016/j.polymdegradstab.2010.10.002

Google Scholar

[16] Tsui, A., Wright, Z. C., & Frank, C. W. Biodegradable polyesters from renewable reso-urces. Annual Review of Chemical and Biomolecular Engineering, 4.1(2013):143.

DOI: 10.1146/annurev-chembioeng-061312-103323

Google Scholar

[17] Averous, L. Biodegradable multiphase systems based on plasticized starch: a review. J. of Macro. Sci.—Polym. Re. C44(3) (2004) 231–274.

Google Scholar

[18] Ren, J., Fu, H., Ren, T., & Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbo. Polym., 77(3) (2009) 576–582.

DOI: 10.1016/j.carbpol.2009.01.024

Google Scholar

[19] Oromiehie, A. R., Lari, T. T., & Rabiee, A. Physical and thermal mechanical properties of corn starch/LDPE composites. J. of Appl. Polym. Sci. 127(2) (2013) 1128–1134.

DOI: 10.1002/app.37877

Google Scholar

[20] J. Dudowicz, J.F. Douglas, K.F. Freed, Two glass transitions in miscible polymer blends. J. Chem. Phys. 140 (24) (2014) 244905.

DOI: 10.1063/1.4884123

Google Scholar

[21] Chi. Naka., Effects of Molecular Weight on the Melting and Crystallization of Poly(L-lactic acid) in a Mixture with Poly(ethylene oxide), Polym. J., 28(7) (1996) 568-575.

DOI: 10.1295/polymj.28.568

Google Scholar

[22] Cartier, L., Okihara, T., Ikada, Y., etl. Epitaxial crystallization and crystalline polymorphism of polylactides. Polym. (Guildf). 41(2000)8909–8919.

DOI: 10.1016/s0032-3861(00)00234-2

Google Scholar

[23] Tábi, T., Sajó, I.E., Szabó, F., etl. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym. Lett. 4 (2010) 659–668.

DOI: 10.3144/expresspolymlett.2010.80

Google Scholar

[24] A. Przybytek, M. Sienkiewicz, J. Kucińska-Lipka, H. Janik,Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions,Indus. Cro. & Pro., 122(2018) 375-383.

DOI: 10.1016/j.indcrop.2018.06.016

Google Scholar

[25] Mad. Nam., K., Nair, N.R., John, R.P., An overview of the recent developments in polylactide (PLA) research. Bio. Technol. 101(2010) 8493–8501.

DOI: 10.1016/j.biortech.2010.05.092

Google Scholar