Composition and Properties of High-Entropy CrZrTiNiCu Coating

Article Preview

Abstract:

In this work, a high-entropy alloy and CrZrTiNiCu coating were synthesized by mechanical alloying. It is shown that the microhardness of the CrZrTiNiCu coating is not inferior to and in most cases exceeds the hardness of high-entropy equiatomic alloys. The wear resistance of such a coating is 3·10-4 g/min, which also corresponds to special steels in terms of wear resistance. The high-entropy coating has a low coefficient of friction. It turns out to be antifrictional, which obviously leads to energy savings. For the first time, the surface energy, contact potential difference and work function of electrons for CrZrTiNiCu coating were determined.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

479-485

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh. Y.L. Chen. S.J. Lin. High-entropy alloys – a new era of exploitation. Materials Science Forum. 560 (2007) 1-9.

DOI: 10.4028/www.scientific.net/msf.560.1

Google Scholar

[2] M.C.G.J. Yeh. P.K. Liaw. Y. Zhang. High-entropy alloys: fundamentals and applications // Springer International Publishing. Switzerland. (2016).

Google Scholar

[3] D.B. Miracle. O.N. Senkov. Acta Materialia A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017) 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[4] Y. Zhang. T.T. Zuo. Z. Tang. M.C. Gao. K.A. Dahmen. P.K. Liaw. Z.P. Lu. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61 (2014) 1-93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[5] B. Cantor. Multicomponent and high entropy alloys. Entropy 16 (2014) 4749-4768.

DOI: 10.3390/e16094749

Google Scholar

[6] P. Huang. J. Yeh. T. Shun. S. Chen. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6 (2004) 74-78.

DOI: 10.1002/adem.200300507

Google Scholar

[7] D.O. Svensson. High entropy alloys: breakthrough materials for aero engine applications? // Chalmers University of Technology. Gothenburg. (2015).

Google Scholar

[8] J. Yeh. S. Chen. S. Lin. J. Gan. T. Chin. T. Shun. C. Tsau. S. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[9] F. Otto. Y. Yang. H. Bei. E.P. George. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61 (2013) 2628-2638.

DOI: 10.1016/j.actamat.2013.01.042

Google Scholar

[10] C. Li. J.C. Li. M. Zhao. Q. Jiang. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloy. Compd. 475 (2009) 752-757.

DOI: 10.1016/j.jallcom.2008.07.124

Google Scholar

[11] D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104 (2016) 172-179.

DOI: 10.1016/j.actamat.2015.11.040

Google Scholar

[12] A.I. Yurkova. V.V. Chernyavskij. A.I. Kravchenko. Formation of the structure and phase composition of the nanocrystalline CuNiAlFeCr alloy by mechanical alloying. Metal Physics and Latest Technologies. 36 4 (2014) 477-490.

Google Scholar

[13] V.M. Yurov, S.A. Guchenko, N.Kh. Ibraev. Determination of the sliding friction coefficient. International Journal of Applied and Basic Research. 8 (2010) 148-152.

Google Scholar

[14] V.M. Yurov, V.Ch. Laurinas, S.A. Guchenko, O.N. Zavackaya. Surface tension of hardening coatings. Hardening technologies and coatings. 1 (2014) 33-36.

Google Scholar

[15] V.M. Yurov, V.S. Oleshko. The impact of the environment on the contact potential difference of metal machine parts. Eurasian Physical Technical Journal. 16 1 (2019). 99-108.

DOI: 10.31489/2019no1/99-108

Google Scholar

[16] G. Firstov. Y. Koval. A. Timoshevskii. S. Yablonovskii. J. Van Humbeeck. Chemical bonding and crystal structure of Zr-based intermetallic high-temperature shape memory alloys. Chem. Met. Alloys. 6 (2003) 205-208.

DOI: 10.30970/cma6.0277

Google Scholar

[17] T. Kosorukova. G. Firstov. Y. Koval. P. Verhovlyuk. J. Van Humbeeck. H. Noel. Structural phase transformations and shape memory effect in ZrCu along with Ni and Hf additions. MATEC Web of Conferences. 33 (2015) 06005.

DOI: 10.1051/matecconf/20153306005

Google Scholar

[18] V.G. Pushin. N.N. Kuranova. N.I. Kourov. R.Z. Valiev. Eh.Z. Valiev. V.V. Makarov. A.V. Pushin. A.N. Uksusnikov. Baroelastic shape memory effects in titanium nickelide alloys subjected to plastic deformation under high pressure. Technical Physics Journal. 82 8 (2012) 67-75.

DOI: 10.1134/s106378421208018x

Google Scholar

[19] S.A. Firstov, V.F. Gorban', A.O. Andreev, N.A. Krapivka. Superhard coatings from high-entropy alloys. Science and innovation. 9 5 (2013) 32-39.

Google Scholar

[20] V.M. Yurov, S.A. Guchenko. Antifriction properties of a high-entropy TiNiZrCuCr coating. Modern high technologies. 10 (2019) 97-101.

DOI: 10.17513/snt.37976

Google Scholar