[1]
J.W. Yeh. Y.L. Chen. S.J. Lin. High-entropy alloys – a new era of exploitation. Materials Science Forum. 560 (2007) 1-9.
DOI: 10.4028/www.scientific.net/msf.560.1
Google Scholar
[2]
M.C.G.J. Yeh. P.K. Liaw. Y. Zhang. High-entropy alloys: fundamentals and applications // Springer International Publishing. Switzerland. (2016).
Google Scholar
[3]
D.B. Miracle. O.N. Senkov. Acta Materialia A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017) 448–511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[4]
Y. Zhang. T.T. Zuo. Z. Tang. M.C. Gao. K.A. Dahmen. P.K. Liaw. Z.P. Lu. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61 (2014) 1-93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[5]
B. Cantor. Multicomponent and high entropy alloys. Entropy 16 (2014) 4749-4768.
DOI: 10.3390/e16094749
Google Scholar
[6]
P. Huang. J. Yeh. T. Shun. S. Chen. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6 (2004) 74-78.
DOI: 10.1002/adem.200300507
Google Scholar
[7]
D.O. Svensson. High entropy alloys: breakthrough materials for aero engine applications? // Chalmers University of Technology. Gothenburg. (2015).
Google Scholar
[8]
J. Yeh. S. Chen. S. Lin. J. Gan. T. Chin. T. Shun. C. Tsau. S. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[9]
F. Otto. Y. Yang. H. Bei. E.P. George. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61 (2013) 2628-2638.
DOI: 10.1016/j.actamat.2013.01.042
Google Scholar
[10]
C. Li. J.C. Li. M. Zhao. Q. Jiang. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloy. Compd. 475 (2009) 752-757.
DOI: 10.1016/j.jallcom.2008.07.124
Google Scholar
[11]
D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104 (2016) 172-179.
DOI: 10.1016/j.actamat.2015.11.040
Google Scholar
[12]
A.I. Yurkova. V.V. Chernyavskij. A.I. Kravchenko. Formation of the structure and phase composition of the nanocrystalline CuNiAlFeCr alloy by mechanical alloying. Metal Physics and Latest Technologies. 36 4 (2014) 477-490.
Google Scholar
[13]
V.M. Yurov, S.A. Guchenko, N.Kh. Ibraev. Determination of the sliding friction coefficient. International Journal of Applied and Basic Research. 8 (2010) 148-152.
Google Scholar
[14]
V.M. Yurov, V.Ch. Laurinas, S.A. Guchenko, O.N. Zavackaya. Surface tension of hardening coatings. Hardening technologies and coatings. 1 (2014) 33-36.
Google Scholar
[15]
V.M. Yurov, V.S. Oleshko. The impact of the environment on the contact potential difference of metal machine parts. Eurasian Physical Technical Journal. 16 1 (2019). 99-108.
DOI: 10.31489/2019no1/99-108
Google Scholar
[16]
G. Firstov. Y. Koval. A. Timoshevskii. S. Yablonovskii. J. Van Humbeeck. Chemical bonding and crystal structure of Zr-based intermetallic high-temperature shape memory alloys. Chem. Met. Alloys. 6 (2003) 205-208.
DOI: 10.30970/cma6.0277
Google Scholar
[17]
T. Kosorukova. G. Firstov. Y. Koval. P. Verhovlyuk. J. Van Humbeeck. H. Noel. Structural phase transformations and shape memory effect in ZrCu along with Ni and Hf additions. MATEC Web of Conferences. 33 (2015) 06005.
DOI: 10.1051/matecconf/20153306005
Google Scholar
[18]
V.G. Pushin. N.N. Kuranova. N.I. Kourov. R.Z. Valiev. Eh.Z. Valiev. V.V. Makarov. A.V. Pushin. A.N. Uksusnikov. Baroelastic shape memory effects in titanium nickelide alloys subjected to plastic deformation under high pressure. Technical Physics Journal. 82 8 (2012) 67-75.
DOI: 10.1134/s106378421208018x
Google Scholar
[19]
S.A. Firstov, V.F. Gorban', A.O. Andreev, N.A. Krapivka. Superhard coatings from high-entropy alloys. Science and innovation. 9 5 (2013) 32-39.
Google Scholar
[20]
V.M. Yurov, S.A. Guchenko. Antifriction properties of a high-entropy TiNiZrCuCr coating. Modern high technologies. 10 (2019) 97-101.
DOI: 10.17513/snt.37976
Google Scholar