[1]
E.P. George, D, Raabe, R.O. Ritchie High-entropy alloys. Nature Reviews Materials. N 4. (2019) 514-534.
Google Scholar
[2]
A. Mehwal, A. Anupam, B.S. Murty, C.C. Berndlt, R.S. Kottada, A.S. Ming Ang. Termal Spray High-Entropy Alloy Coatings. A Review "J Therm Spray Tech 2. (2020) 857-890.
DOI: 10.1007/s11666-020-01047-0
Google Scholar
[3]
С. Zhang, C. Zhu, C. Harrington, T. Casalena, H. Wang, S. Shin, K.S. Vecchio. Multifunctional non-equiatomic high entropy alloys with superelastic, high damping, and excellent cryogenic properties. Advanced Engineering Materials. 21.1 (2019) 515-534.
DOI: 10.1002/adem.201800941
Google Scholar
[4]
Firstov G.S., Kosorukova T.A., Koval Y.N., Odnosum V.V. High entropy shape memory alloys. Mater Today: Proceedings Materials Today: Proceedings 2S (2015) 499–504.
DOI: 10.1016/j.matpr.2015.07.335
Google Scholar
[5]
Zh.M. Blednova., P.O. Rusinov Formation of surface layers from highly entropic materials with shape memory effect. AIP Conference Proceedings. 2167.1 (2019) Art. N 02003.
DOI: 10.1063/1.5131902
Google Scholar
[6]
Zh.M. Blednova, P.O. Rusinov, E.Y. Balaev, D.V. Dmitrenko. Improving product performance by forming surface compositions from shape memory effect materials with a gradient of properties and phase transformation. Material Design & Processing Communications. N 1 (2020) 1-7.
DOI: 10.1002/mdp2.132
Google Scholar
[7]
Tianchen Li, Yong Liu, Bin Liu, Wenmin Guo and Liyou Xu. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes. Сoatings 2017, 7, 151;.
DOI: 10.3390/coatings7090151
Google Scholar
[8]
Y I. Chumlyakov, I.V. Kireeva, O.A. Kutz, A.S. Turabi, H.E. Karaca, I. Karaman. Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scripta Materialia. 119 (2016) 43-46.
DOI: 10.1016/j.scriptamat.2016.03.027
Google Scholar
[9]
Zh. Blednova, М. Baryshev, V. Buzko, Е. Balaev, А. Goryachko. Structure and Properties of High Entropy Films made of FeNiCoAlW Material with Thermoelastic Phase Transformations obtained by magnetron sputtering. AIP Conference Proceedings 2310, 020032 (2020) https://doi.org/10.1063/5.0034334.
DOI: 10.1063/5.0034334
Google Scholar
[10]
J. Ma. High Temperature Shape Memory Alloys – CASMART (2019) www.casmart.org.
Google Scholar
[11]
Y.Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, Y.Ishida K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science. V. 327 (2010) 1488.
DOI: 10.1126/science.1183169
Google Scholar
[12]
A.I. Yurkova, V. V. Chernyavskii, and V. F. Gorban. Structure and mechanical properties of high-entropy alcunifeti and alcunifecr alloys produced by mechanical activation followed by pressure sintering Powder Metallurgy and Metal Ceramics, Vol. 55, Nos. 3-4 (2016).
DOI: 10.1007/s11106-016-9790-3
Google Scholar
[13]
C. Suryanarayana, Mechanical alloying and milling, Progr. Mater. Sci., 46, (2001) 1–184.
Google Scholar
[14]
P.Rusinov, Zh.Blednova. Structure and properties of the CoCuTiZrHf coating obtained by the HVOF method. ICE Publishing Surface Innovations 9(2-3), (2021) https://doi.org/10.1680/jsuin.20.00029.
DOI: 10.1680/jsuin.20.00029
Google Scholar