Theoretical Investigation in Coherent Manipulation throughout the Calculation of the Local Density of States in FM-DQD-FM Device

Article Preview

Abstract:

In this work, theoretical investigation in coherent manipulation throughout local density of states calculation for serially coupled double quantum dots embedded between ferromagnetic leads (FM-QD1-QD2-FM) by using the non-equilibrium Green's function approach. Since the local density of states are formulated incorporating the spin polarization and the type of spin configuration on the leads. Our model incorporates the inter-dot hopping, the intra-dot Coulomb correlation, the spin exchange energy and the coupling interactions between the quantum dots and leads. The results concerned to the parallel configuration at strong inter-dot coupling regime shows that the spin down electrons in the quantum dots may be more coupled coherently if the regime is tuned. The local density of states of the two dots for spin up electrons shows a broad hump with small splitting i.e. the case is decoherent for spin up electrons. In the case of weak interdot coupling it is obvious that the spin dependent density of states on the quantum dots show that the resonances are not well splitted. For the antiparallel configuration in the strong coupling regime, the spin dependent density of states of the double quantum dots show four peaks but with broaden and overlapping. In the case of weak coupling regime, the total spin dependent density of states, which have two peaks with certain board, one can conclude that the states are not coupled coherently. The case of the antiferromagnetic nature of the spin exchange interaction, our calculations for the parallel and antiparallel configurations (in strong and weak regimes) show a decoherence state.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

451-469

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Edvinsson, Optical quantum confinement and photocatalytic properties in two-, one-and zero-dimensional nanostructures, R. Soc. open Sci., vol. 5, no. 9 (2018) p.180387.

DOI: 10.1098/rsos.180387

Google Scholar

[2] C. C. Price, N. C. Frey, D. Jariwala, and V. B. Shenoy, Engineering zero-dimensional quantum confinement in transition-metal dichalcogenide heterostructures, ACS Nano, vol. 13, no. 7 (2019) p.8303–8311.

DOI: 10.1021/acsnano.9b03716

Google Scholar

[3] J. Liang, D. Chen, X. Yao, K. Zhang, F. Qu, L. Qin, Y. Huang, and J. Li, Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications, Small, vol. 16, no. 15 (2020) p.1903398.

DOI: 10.1002/smll.201903398

Google Scholar

[4] W. Xie, Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots, Phys. B Condens. Matter, vol. 449 (2014) p.57–60.

DOI: 10.1016/j.physb.2014.04.075

Google Scholar

[5] X. Zhang, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, and G.-P. Guo, Semiconductor quantum computation, Natl. Sci. Rev., vol. 6, no. 1 (2019) 32–54.

Google Scholar

[6] J. Cayao, M. Benito, and G. Burkard, Programable two-qubit gates in capacitively coupled flopping-mode spin qubits, Phys. Rev. B, vol. 101, no. 19 (2020) 195438.

DOI: 10.1103/physrevb.101.195438

Google Scholar

[7] E. Afsaneh and M. B. Harouni, Robust entanglement of an asymmetric quantum dot molecular system in a Josephson junction, Heliyon, vol. 6, no. 7 (2020) e04484.

DOI: 10.1016/j.heliyon.2020.e04484

Google Scholar

[8] G. Rodary, L. Bernardi, C. David, B. Fain, A. Lemaître, and J.-C. Girard, Real space observation of electronic coupling between self-assembled quantum dots, Nano Lett., vol. 19, no. 6 (2019) p.3699–3706.

DOI: 10.1021/acs.nanolett.9b00772

Google Scholar

[9] L. Oroszlany, A. Kormanyos, J. Koltai, J. Cserti, and C. J. Lambert, Nonthermal broadening in the conductance of double quantum dot structures, Phys. Rev. B, vol. 76, no. 4 (2007) p.45318.

DOI: 10.1103/physrevb.76.045318

Google Scholar

[10] M. A. Najdi, H. A. Jassem, and J. M. AL-Mukh, Electron tunneling through serially coupled double quantum dots: The coulomb blockade, in IOP Conference Series: Materials Science and Engineering, vol. 454 (2018) p.12043.

DOI: 10.1088/1757-899x/454/1/012043

Google Scholar

[11] W. G. Van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Electron transport through double quantum dots, Rev. Mod. Phys., vol. 75, no. 1 (2002) 1.

DOI: 10.1103/revmodphys.75.1

Google Scholar

[12] A. K. Hüttel, S. Ludwig, H. Lorenz, K. Eberl, and J. P. Kotthaus, Direct control of the tunnel splitting in a one-electron double quantum dot, Phys. Rev. B, vol. 72, no. 8 (2005) p.81310.

DOI: 10.1103/physrevb.72.081310

Google Scholar

[13] D. E. F. Biesinger, Thermally activated charge fluctuations in GaAs double quantum dots, University_of_Basel, (2014).

Google Scholar

[14] M. A. Najdi, J. M. AL-Mukh, and H. A. Jassem, Model Parameterization for Coherent Manipulation in Spin Current through FM-QD1-QD2-FM, J. Phys.: Conf. Ser. vol. 1818 (2021) 012102.

DOI: 10.1088/1742-6596/1818/1/012102

Google Scholar

[15] M. Lee, M.-S. Choi, R. López, R. Aguado, and J. Martinek, Two-impurity Anderson model revisited: Competition between Kondo effect and reservoir-mediated superexchange in double quantum dots, Phys. Rev. B, vol. 81, no. 12 (2010) p.121311.

DOI: 10.1103/physrevb.81.121311

Google Scholar

[16] D. M.-T. Kuo, S.-Y. Shiau, and Y. Chang, Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system, Phys. Rev. B, vol. 84, no. 24 (2011) p.245303.

DOI: 10.1103/physrevb.84.245303

Google Scholar

[17] A. R. Ahmed, The Chemisorption of Hydrogen and Alkali Atoms on Graphene with and without Decoration, Ph. D. thesis, University of Basrah, Basrah, Iraq, 2017.

Google Scholar

[18] Y. Nishikawa, O. J. Curtin, A. C. Hewson, D. J. G. Crow, and J. Bauer, Conditions for observing emergent SU (4) symmetry in a double quantum dot, Phys. Rev. B, vol. 93, no. 23 (2016) p.235115.

DOI: 10.1103/physrevb.93.235115

Google Scholar

[19] Y. S. Liu, X. F. Yang, X. K. Hong, M. S. Si, F. Chi, and Y. Guo, A high-efficiency double quantum dot heat engine, Appl. Phys. Lett., vol. 103, no. 9 (2013) p.93901.

DOI: 10.1063/1.4819852

Google Scholar

[20] X. Zhou, F. Qi, and G. Jin, Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot, J. Appl. Phys., vol. 115, no. 15 (2014) p.153706.

DOI: 10.1063/1.4871542

Google Scholar

[21] I. Weymann, Boosting spin-caloritronic effects by attractive correlations in molecular junctions, Sci. Rep., vol. 6, no. 1 (2016) 1–10.

DOI: 10.1038/srep19236

Google Scholar

[22] F.-B. Yang, Spin-polarized transport through a hybrid Majorana quantum dot system coupled ferromagnetic leads, Phys. E Low-dimensional Syst. Nanostructures, vol. 109 (2019) p.164–168.

DOI: 10.1016/j.physe.2019.01.020

Google Scholar