Materials Science Forum
Vol. 1046
Vol. 1046
Materials Science Forum
Vol. 1045
Vol. 1045
Materials Science Forum
Vol. 1044
Vol. 1044
Materials Science Forum
Vol. 1043
Vol. 1043
Materials Science Forum
Vol. 1042
Vol. 1042
Materials Science Forum
Vol. 1041
Vol. 1041
Materials Science Forum
Vol. 1040
Vol. 1040
Materials Science Forum
Vol. 1039
Vol. 1039
Materials Science Forum
Vol. 1038
Vol. 1038
Materials Science Forum
Vol. 1037
Vol. 1037
Materials Science Forum
Vol. 1036
Vol. 1036
Materials Science Forum
Vol. 1035
Vol. 1035
Materials Science Forum
Vol. 1034
Vol. 1034
Materials Science Forum Vol. 1040
Paper Title Page
Abstract: Photodynamic therapy (PDT) is a promising modern method for treatment of oncological, bacterial, fungal and viral diseases. However, its application is limited to diseases with superficial localization since the body tissues are not transparent for visible light. To address this problem and extend PDT application to abdominal diseases, an enhanced method of X-ray photodynamic therapy (XRPDT) is suggested, involving X-ray radiation easily penetrating the body tissues. The implementation of this approach requires the development of a pharmacological drug including a photosensitizer stimulated by visible light to yield active oxygen and a nanosized phosphor converting X-ray radiation into visible light with the wavelength required for the photosensitizer activation. This study is aimed at obtaining X-ray stimulated phosphors with nanosized particles suitable for XRPDT application. For this purpose, Y2O3:Eu phosphors were synthesized via hydrothermal processing of the corresponding mixed acetate followed by annealing. To prevent from the undesirable agglomeration of the particles in the course of hydrothermal synthesis and subsequent annealing, different techniques were used, including rapid thermal annealing (RTA), microwave annealing and addition of finely dispersed pyrogenic silica (aerosil) to the phosphor. The microwave annealing was carried out using a special installation including a resonance chamber for maintaining a standing wave of microwave radiation. The performed research allowed the determination of hydrothermal processing optimal duration affording the synthesis of phosphors with the highest luminescence brightness. The application of microwave annealing is found to provide phosphors with a more perfect crystal structure compared with RTA. The developed method of Y2O3:Eu phosphor synthesis involving pyrogenic silica addition to the autoclave allowed the preparation of samples with the amorphous structure and significantly reduced the particle size without a considerable decrease in the luminescence brightness. The particle size of the phosphor synthesized with aerosil addition is less than 100 nm that allows its implementation in pharmacological drugs for XRPDT.
61
Abstract: The main purpose of this work is to study and evaluate the mechanical properties of nanocomposite coatings based on metal-ceramics. The research also estimates factors affecting the unique properties of these surface coatings. The study compares the physical and mechanical properties of tool material plates with a nanodispersed multilayer composite coating and analyzes the results of mechanical tests with and without these coverings. The results of the investigation show that nanocomposite coatings contribute to hardness, strength and wear resistance more than three times, while traditional hardening methods, such as thermal and chemical-thermal treatment, improve the mechanical properties much less. It can be concluded that nanocomposite coatings can increase the strength resource of the tool. Their main disadvantage is the individuality of the properties of each coating and the need for expensive equipment for their creation and application. In the use of nanocomposite coatings to increase surface properties, multicomponent coatings are of the greatest interest. As a result of this work, the nanocomposite metal coating of the nc-TiN/a-Si3N4 system was studied, the dependence of properties on the content of the nc-TiN and a-Si3N4 phases was examined, and the optimal ratio was found which ensured the highest values of hardness with the best wear resistance.
68
Abstract: The scientific basis for the production of a new composite material (1-x)PbSexPbSeO3, where x=0-1, by oxidation with oxygen at temperatures of 500-550 °C and oxidation times of 0.5-4 h from the initial phase of PbSe in the form of powder, film or compact material, having a ferroelectric phase transition in disordered crystals is developed. On the X-ray spectra of the original PbSe samples oxidized at 500°C (oxidation time of 0.5 h) it has been found that the PbSe phase reflexes are predominately present, including the X-ray spectra of the original PbSe samples oxidized at 500 °C (oxidation time of 4 h) - PbSeO3 monoclinic phase reflexes. For all other PbSe oxygen-oxidized samples at temperatures of 500-550 °C and within the time range of 0.5-4 h, X-ray spectra show the simultaneous presence of X-ray reflexes of both phases with the trend of increasing the PbSeO3 phase as the oxidation time increases. Temperature measurements of the DC resistance of the PbSe samples revealed an abnormal change in electrical resistance at the initial oxidation stage for both the film and the compact material, and further oxidation contributed to the capsulation of PbSe grains by the dielectric casing PbSeO3 and the gradual increase in the resistance of the material.
75
Abstract: This paper presents the results of the application of new unique techniques based on plasma nanotechnology in metallurgy and materials science. In recent years, a team of authors have developed the solutions for extraordinary problems arising in the conditions of metallurgical enterprises related to the production of synthetic materials and control of manufactured products, namely, the methods for the production of various structural materials and optimization of methods for their non-destructive testing by atomic emission spectral analysis (AESA). The paper points out some aspects of ongoing research, in particular, an innovative technique that allows obtaining ultrapure samples of white corundum by plasma melting of alumina in a reactor. This method also allows obtaining ultrapure aluminum at the output, which can be used for the purposes of hydrogen energy. In the course of the research, the criteria for thermal protection, temperature conditions and optimal parameters of the plasmatron were determined. In order to carry out the studies of metals and alloys by AESA method, a new global analytical method was developed, which made it possible to take into account the influence of various important parameters, including third elements, background plasma radiation, etc. This method has been preliminary tested on emission spectrometers made in Russia and can significantly reduce the error in the determination of low concentrations of elements. In addition to the consideration of these parameters, the method makes it possible to perform high-precision calibration of atomic emission spectrometers of the same type (produced in series), using not a set of several tens of approved standard samples, but only two standard samples. For each area, patent applications were formed and filed.
87
Abstract: Stabilization of the functional properties of dispersed and compact solid metals, as well as regulation of their reactivity, improvement of water-repellent, antifriction and anti-corrosion properties by creating the protective films on the surface is an urgent problem of obtaining resource-saving materials. Previously, the research conducted at REC "Nanotechnology" of Mining University proved that chemisorption of ethylhydridesiloxane vapors together with cationic surfactants based on quaternary ammonium compounds has a beneficial effect on the water-repellent properties of metals. In order to obtain the physicochemical substantiation of the effect of hydrophobization of the surface of modified dispersed metals for the first time, the study of the electrophilic-nucleophilic properties of the active substances of the surface modifiers of dispersed and compact metals was carried out using the methods of quantum-chemical modeling in HyperChem software package. The dipole moment, energy of the highest occupied and the lowest unoccupied molecular orbitals, electrophilic-nucleophilic properties were determined. The series of enhancement of nucleophilic/electrophilic properties and dipole moment for modifiers were obtained. The donor-acceptor properties, the differences in the characteristics of the molecules of alkamone (A), triamone (T) and hydrophobic silicone organic liquid were quantitatively and qualitatively established. The patterns of the formation of hydrophobic properties of the surface during the layering of molecules of ammonium and organosilicon compounds with different electrophilic-nucleophilic properties on dispersed metals have been established. Recommendations for the use of modifiers for the production of high - and superhydrophobic materials are proposed.
94
Abstract: The strength of materials is determined by their atomic molecular structure and the process of decay of atomic molecular bonds, which must be taken into account when optimizing materials strength control technologies. The fracture photomicrograph of metal microdamage of welded joint at various moments of time, a multilevel model of flow of acoustic emission signals of materials are presented. The physical meaning, the scale level of parameters included in the model are revealed. The structure of the mathematical model of the flow of AE signals with components of its informative elements of different scale level by strength characteristics of structural materials and resource of technical objects is shown. The multilevel model of the AE signal flow is hierarchically structured, obtained by generalizing deterministic-statistical variability. It describes the process of randomly recording deterministic accumulated damages in the material both before and after the formation of a crack at the stage of waiting for its next leap. It is shown that the proposed nanotechnology of strength control of materials is reduced to non-destructive determination of parameters of prognostic homogeneous destruction, identification of which is based on multilevel modeling of time dependence of micro-crack formation, formulation of criterion of strength homogeneity, registration of AE parameters related to the model of a specific product, which can be automated processing of registration results and determination of universal strength nanoconstants from already published reference data of fatigue tests of standard material samples.
101
Abstract: Current global environmental challenges and, above all, global warming associated with a change in the carbon balance in the atmosphere has led to the need for urgent and rapid search for ways to reduce greenhouse gas emissions into the atmosphere, which primarily include carbon dioxide as a by-product of human activity and technological progress. One of these ways is the creation of industries with a complete cycle of turnover of carbon dioxide. Aluminum is the most sought-after nonferrous metal in the world, but its production is not environmentally safe, so it constantly requires the development of knowledge-intensive technologies to improve the technological process of cleaning and disposal of production waste, primarily harmful emissions into the atmosphere. Another environmental problem related to aluminum production is the formation and accumulation in mud lagoon of huge amounts of so-called highly alkaline "red mud," which is a waste product of natural bauxite raw material processing into alumina - the feedstock for aluminum production. Commonly known resources and technological methods of neutralizing red mud and working with it as ore materials for further extraction of useful components are still not used because of their low productivity and cost-effectiveness. This article describes the negative impact of waste in the form of "red" mud and carbon dioxide of primary aluminum production on the environment. The results showed that thanks to carbonization of red mud using carbon dioxide, it is possible to achieve rapid curing and its compact formation for safer transportation and storage until further use. Strength tests of concrete samples filled with deactivated red mud were also carried out, which showed the prospects of using concrete with magnesia binder.
109
Abstract: The results of tests for resistance to abrasive wear on highly abrasive hard rock white electrocorundum are presented. The main material of fast-wearing elements of mining and processing equipment-110G13L steel (Gadfield steel) in comparison with other 9 grades of steel and cast iron, including specially developed wear-resistant foreign steels such as Hardox and Miiluks, is analyzed. The studies were carried out using an experimental stand for studying the material wearing process. On the stand the sample was fixed in a holding device and, after being brought into contact with the abrasive, it was rotated under a constant load. As a result of the experiments, it was confirmed that the order of placement of the tested materials in terms of increasing wear resistance coincides with their placement in terms of increasing hardness. At the same time, the wear resistance of the most resistant material – U8A steel after quenching – is about 4 times higher than this indicator for the least resistant components – low-carbon steel 25L, including gray and high-strength cast iron SCH21, VCH35. The wear resistance of 110G13L steel, as well as 65G, U8 steels in the hardened state, is from 1.5 to 2 times higher than that of foreign steels M400, H450, M500, H500. The results of the conducted studies allow us to evaluate the analyzed materials on the basis of their wear resistance and hardness indicators on the feasibility of using them in the manufacture of fast-wearing parts of mining equipment. Based on the research data, it seems promising to develop new ways to increase the wear resistance of domestic steel, including 110G13L steel traditionally used in mining.
117
Abstract: Due to the intensive development of composite materials and technologies for producing parts from them, they are increasingly used in various industries, including the manufacture of products with increased requirements for the characteristics of final products (strength, stiffness, minimum weight, etc.). In this regard, the authors analyzed the possibility to optimize the layered structure of a composite material in order to give it a pronounced predictable anisotropy of properties required for the final product. Thus, the influence of the orientation of the fibers of the reinforcing material in different layers of the package and the number of layers of the package on the physical and mechanical characteristics of the hypothetical product were analyzed. The problem was solved through the example of the development of a wing for a hypothetical UAV.
124
Abstract: The paper presents studies on the properties of various types of micro-reinforcing fibers to assess their role and effectiveness in the structure formation of the cellular composite. Based on the data on the weight loss after exposure in a model medium of cement, analysis of the alkali resistance of fibers of five different types – basalt fiber, heat-treated basalt fiber, polymer fiber and glass fibers from two different manufacturers – was carried out. It is shown that the fibers have a sufficiently high durability in the medium of hardening cement, which is expressed by a relatively insignificant weight loss of the original fiber after exposure in a model medium for 28 days in ambient conditions. The weight loss for some fibers sharply increases when hardening conditions are changed to hydrothermal ones. The images of fibers exposed in a model medium of cement, obtained using scanning microscopy, were also analyzed, and the character of distribution of acidic and basic adsorption sites on the surface of fibers depending on the type was assessed. Based on the analysis of the obtained data, we can talk about a high number of active sites on the surface of basalt and glass fibers, which ensures the formation of crystalline new formations on them and makes it possible to predict their high adhesion to the cement matrix.
132