Technical Nanospintronics Analysis of the Performance Optimization of Devices Based on Carbonaceous Materials

Article Preview

Abstract:

Technical analysis of the performance optimization of nanospintronics devices based on carbonaceous materials has been presented in this paper. Mathematical formulation of the nanospintronics devices and a brief theory of these devices have been briefly discussed. A qualitative review of some of important nanospintronics based devices has also been given. The paper is expected to be useful to the new entrants in this exciting field, and also for the designers of some novel devices based on use of carbonaceous materials in nanospintronics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

1-8

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Seneor, P., Bernand-Mantel, A., & Petroff, F. (2007). Nanospintronics: when spintronics meets single electron physics. Journal of Physics: Condensed Matter, 19(16), 165222. https://doi.org/10.1088/0953-8984/19/16/165222.

DOI: 10.1088/0953-8984/19/16/165222

Google Scholar

[2] Kervalishvili, P., & Lagutin, A. (2008). Nanostructures, magnetic semiconductors and spintronics. Microelectronics Journal, 39(8), 1060-1065. https://doi.org/10.1016/j.mejo.2007.08.001.

DOI: 10.1016/j.mejo.2007.08.001

Google Scholar

[3] Chopra K.N. (2013). New Materials and their Selection for Designing and Fabricating the Spintronic Devices - A Technical Note. Italian Journal of Optoelectronics - Atti Fond G. Ronchi, 68, 673-680.

Google Scholar

[4] Chopra, K.N. (2013). A short note on the organic semiconductors and their technical applications in spintronics. Lat Am J Phys E, 7(4), 674-679.

Google Scholar

[5] Chopra, K.N. (2014). A technical note on magnetic tunneling junctions, their types, structures and significance in spintronics. Invertis Journal of Science & Technology, 7(4), 246-254.

Google Scholar

[6] Chopra, K.N. (2013). A short note on the mathematical modeling of spintronic devices. Italian Journal of Optoelectronics – Atti Fond G. Ronchi, 68, 39-54.

Google Scholar

[7] Fang, D., Kurebayashi, H., Wunderlich, J., Výborný, K., Zârbo, L.P., Campion, R.P., & Ferguson, A.J. (2011). Spin-orbit-driven ferromagnetic resonance. Nature Nanotechnology, 6(7), 413-417. https://doi.org/10.1038/nnano.2011.68.

DOI: 10.1038/nnano.2011.68

Google Scholar

[8] Goldhaber-Gordon, D., Göres, J., Kastner, M. A., Shtrikman, H., Mahalu, D., & Meirav, U. (1998). From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor. Physical Review Letters, 81(23), 5225-5228. https://doi.org/10.1103/physrevlett.81.5225.

DOI: 10.1103/physrevlett.81.5225

Google Scholar

[9] Žutić, I., Fabian, J., & Das Sarma, S. (2004). Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76(2), 323-410. https://doi.org/10.1103/revmodphys.76.323.

DOI: 10.1103/revmodphys.76.323

Google Scholar

[10] Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., & Jansen, R. (2009). Electrical creation of spin polarization in silicon at room temperature. Nature, 462(7272), 491-494. https://doi.org/10.1038/nature08570.

DOI: 10.1038/nature08570

Google Scholar

[11] Wang, K., Ovchinnikov, I., Xiu, F., Khitun, A., & Bao, M. (2011). From Nanoelectronics to Nano-Spintronics. Journal of Nanoscience and Nanotechnology, 11(1), 306-313. https://doi.org/10.1166/jnn.2011.3155.

DOI: 10.1166/jnn.2011.3155

Google Scholar

[12] Borschel, C., Messing, M.E., Borgström, M.T., Paschoal, W., Wallentin, J., Kumar, S., & Ronning, C. (2011). A New Route toward Semiconductor Nanospintronics: Highly Mn-Doped GaAs Nanowires Realized by Ion-Implantation under Dynamic Annealing Conditions. Nano Letters, 11(9), 3935-3940. https://doi.org/10.1021/nl2021653.

DOI: 10.1021/nl2021653

Google Scholar

[13] Pramanik, S., Kanchibotla, B., Garre, K., Cahay, M., & Bandyopadhyay, S. (2007). Organic nano-spintronics. 2007 7th IEEE Conference on Nanotechnology (IEEE NANO). https://doi.org/10.1109/NANO.2007.4601173.

DOI: 10.1109/nano.2007.4601173

Google Scholar

[14] Cottet, A., Kontos, T., Sahoo, S., Man, H. T., Choi, M.-S., Belzig, W., & Schönenberger, C. (2006). Nanospintronics with carbon nanotubes. Semiconductor Science and Technology, 21(11), S78-S95. https://doi.org/10.1088/0268-1242/21/11/S11.

DOI: 10.1088/0268-1242/21/11/s11

Google Scholar

[15] Kontos, T., & Cottet, A. (2007). Towards nanospintronics. Europhysics News, 38(2), 28-30. https://doi.org/10.1051/EPN:2007008.

DOI: 10.1051/epn:2007008

Google Scholar

[16] Nossa Márquez, J. F. (2013). Nanospintronics with Molecular Magnets-Tunneling and Spin-Electric Coupling. Lund University.

Google Scholar

[17] Wickles, C., & Belzig, W. (2009). Electronic transport in ferromagnetic conductors with inhomogeneous magnetic order parameter and domain-wall resistance. Physical Review B, 80(10), 104435.

DOI: 10.1103/physrevb.80.104435

Google Scholar

[18] Lai, N.S., Lim, W.H., Yang, C.H., Zwanenburg, F.A., Coish, W.A., Qassemi, F., & Dzurak, A.S. (2011). Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot. Scientific Reports, 1(1). https://doi.org/10.1038/srep00110.

DOI: 10.1038/srep00110

Google Scholar

[19] (19) Wu Yihong, Nano Spintronics for Data Storage, in Encyclopedia of Nanoscience and Nanotechnology, Ed. Nalwa H. S. 10 (2003) 1-50.

Google Scholar

[20] Koo, H.C., Kwon, J.H., Eom, J., Chang, J., Han, S.H., & Johnson, M. (2009). Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325(5947), 1515-1518. https://doi.org/10.1126/science.1173667.

DOI: 10.1126/science.1173667

Google Scholar

[21] Lee, K.J., Stiles, M.D., Lee, H.W., Moon, J.H., Kim, K.W., & Lee, S.W. (2013). Self-consistent calculation of spin transport and magnetization dynamics. Physics Reports, 531(2), 89-113. https://doi.org/10.1016/j.physrep.2013.05.006.

DOI: 10.1016/j.physrep.2013.05.006

Google Scholar

[22] Yang, Y., & Hu, B. (2014). Bio-based chemicals from biorefining: lipid and wax conversion and utilization. Advances in Biorefineries, 693-720. https://doi.org/10.1533/9780857097385.2.693.

DOI: 10.1533/9780857097385.2.693

Google Scholar