The Effect of Impregnation Ratio on the Surface Characteristics of Gigantochloa Verticillata Bamboo-Activated Carbon

Article Preview

Abstract:

The activation process is the final stage in the manufacturing of activated carbon that can be carried out physically or chemically. This paper focuses on characterizing the surface properties of activated carbons from Gigantochloa verticillata bamboo that are chemically activated at 750°C under different impregnation ratios (IRs) of 1:1, 2:1, and 3:1. The activated carbons produced were denoted as IR1-AC, IR2-AC, and IR3-AC for impregnation ratios of 1:1, 2:1, and 3:1, respectively. Characterizations include TGA, SEM, and adsorption isotherm tests. The results of the research show that variation of the impregnation ratio yielded fluctuated content of proximate elements and surface properties of activated carbons. The highest fixed carbon of 75.69% and the lowest ash of 13.10% were obtained by IR2-AC. The highest surface area of 511.10 m2/g and pore volume of 0.561 cc/g was obtained by IR3-AC and IR2-AC, respectively. The activated carbon pores are distributed in micropores and mesopores areas with average pore diameters of 1.245, 2.494, and 1.984 nm for IR1-AC, IR2-AC, and IR3-AC, respectively. The existence of the pores can be found on the surface morphology of activated carbons.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

59-66

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Machida, M., Fotoohi, B., Amamo, Y., & Mercier, L. (2012). Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon. Applied Surface Science, 258(19), 7389-7394. https://doi.org/10.1016/j.apsusc.2012.04.042Saleh.

DOI: 10.1016/j.apsusc.2012.04.042

Google Scholar

[2] Saleh, T. A. (2018). Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. Journal of Cleaner Production, 172, 2123-2132. https://doi.org/10.1016/j.jclepro.2017.11.208.

DOI: 10.1016/j.jclepro.2017.11.208

Google Scholar

[3] Esteves, I.A.A.C., Lopes, M.S.S., Nunes, P.M.C., & Mota, J.P.B. (2008). Adsorption of natural gas and biogas components on activated carbon. Separation and Purification Technology, 62(2), 281-296. https://doi.org/10.1016/j.seppur.2008.01.027.

DOI: 10.1016/j.seppur.2008.01.027

Google Scholar

[4] Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., & Araki, T. (2002). Natural gas storage in activated carbon pellets without a binder. Carbon, 40(1), 87-93. https://doi.org/10.1016/s0008-6223(01)00084-7.

DOI: 10.1016/s0008-6223(01)00084-7

Google Scholar

[5] Azevedo, D.C.S., Araújo, J.C.S., Bastos-Neto, M., Torres, A.E.B., Jaguaribe, E.F., & Cavalcante, C.L. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 100(1-3), 361-364. https://doi.org/10.1016/j.micromeso.2006.11.024.

DOI: 10.1016/j.micromeso.2006.11.024

Google Scholar

[6] Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B., & Koren, Z. C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products, 47, 153-159. https://doi.org/10.1016/j.indcrop.2013.03.004.

DOI: 10.1016/j.indcrop.2013.03.004

Google Scholar

[7] Koroviaka, Y., Pinka, J., Tymchenko, S., Rastsvietaiev, V., Astakhov, V., & Dmytruk, O. (2020). Elaborating a scheme for mine methane capturing while developing coal gas seams. Mining of Mineral Deposits, 14(3), 21-27. https://doi.org/10.33271/mining14.03.021.

DOI: 10.33271/mining14.03.021

Google Scholar

[8] Ferrera-Lorenzo, N., Fuente, E., Suárez-Ruiz, I., & Ruiz, B. (2014). Sustainable activated carbons of macroalgae waste from the Agar-Agar industry. Prospects as adsorbent for gas storage at high pressures. Chemical Engineering Journal, 250, 128-136. https://doi.org/10.1016/j.cej.2014.03.119.

DOI: 10.1016/j.cej.2014.03.119

Google Scholar

[9] Ademiluyi, F.T., & Braide, O. (2012). Effectiveness of Nigerian bamboo activated with different activating agents on the adsorption of BTX. Journal of Applied Sciences and Environmental Management, 16(3), 267-273.

Google Scholar

[10] Akpa, N. (2014). Adsorption of benzene on activated carbon from agricultural waste materials. Research Journal of Chemical Sciences, 4, 30-34.

Google Scholar

[11] Nunthaprechachan, T., Pengpanich, S., & Hunsom, M. (2013). Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon. Chemical Engineering Journal, 228, 263-271. https://doi.org/10.1016/j.cej.2013.04.067.

DOI: 10.1016/j.cej.2013.04.067

Google Scholar

[12] Petrova, B., Budinova, T., Tsyntsarski, B., Kochkodan, V., Shkavro, Z., & Petrov, N. (2010). Removal of aromatic hydrocarbons from water by activated carbon from apricot stones. Chemical Engineering Journal, 165(1), 258-264. https://doi.org/10.1016/j.cej.2010.09.026.

DOI: 10.1016/j.cej.2010.09.026

Google Scholar

[13] Águeda, V.I., Crittenden, B.D., Delgado, J.A., & Tennison, S.R. (2011). Effect of channel geometry, degree of activation, relative humidity and temperature on the performance of binderless activated carbon monoliths in the removal of dichloromethane from air. Separation and Purification Technology, 78(2), 154-163. https://doi.org/10.1016/j.seppur.2011.01.036.

DOI: 10.1016/j.seppur.2011.01.036

Google Scholar

[14] Zhu, X.L., Wang, P.Y., Peng, C., Yang, J., & Yan, X.-. (2014). Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chemical Letters, 25(6), 929-932. https://doi.org/10.1016/j.cclet.2014.03.039.

DOI: 10.1016/j.cclet.2014.03.039

Google Scholar

[15] Ahmed, M.J., & Theydan, S.K. (2014). Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption. Journal of Analytical and Applied Pyrolysis, 105, 199-208. https://doi.org/10.1016/j.jaap.2013.11.005.

DOI: 10.1016/j.jaap.2013.11.005

Google Scholar

[16] Cao, W., & Yang, F. (2018). Supercapacitors from high fructose corn syrup-derived activated carbons. Materials Today Energy, 9, 406-415. https://doi.org/10.1016/j.mtener.2018.07.002v.

DOI: 10.1016/j.mtener.2018.07.002

Google Scholar

[17] Huang, T., Qiu, Z., Wu, D., & Hu, Z. (2015). Bamboo-based activated carbon MnO2 nanocomposites for flexible high-performance supercapacitor electrode materials. International Journal of Electrochemical Science, 10, 6312-6323.

Google Scholar

[18] Zhang, Y., Zheng, J., Qu, X., & Chen, H. (2007). Effect of granular activated carbon on degradation of methyl orange when applied in combination with high-voltage pulse discharge. Journal of Colloid and Interface Science, 316(2), 523-530. https://doi.org/10.1016/j.jcis.2007.08.013.

DOI: 10.1016/j.jcis.2007.08.013

Google Scholar

[19] Yagmur, E., Tunc, M. S., Banford, A., & Aktas, Z. (2013). Preparation of activated carbon from autohydrolysed mixed southern hardwood. Journal of Analytical and Applied Pyrolysis, 104, 470-478. https://doi.org/10.1016/j.jaap.2013.05.025.

DOI: 10.1016/j.jaap.2013.05.025

Google Scholar

[20] Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.051.

DOI: 10.1016/j.rser.2015.02.051

Google Scholar

[21] Ahmadpour, A., Okhovat, A., & Darabi Mahboub, M. J. (2013). Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data. Journal of Physics and Chemistry of Solids, 74(6), 886-891. https://doi.org/10.1016/j.jpcs.2013.01.036.

DOI: 10.1016/j.jpcs.2013.01.036

Google Scholar

[22] Das, D., Samal, D. P., & BC, M. (2015). Preparation of Activated Carbon from Green Coconut Shell and its Characterization. Journal of Chemical Engineering & Process Technology, 06(05). https://doi.org/10.4172/2157-7048.1000248.

DOI: 10.4172/2157-7048.1000248

Google Scholar

[23] Choy, K.K.H., Barford, J.P., & McKay, G. (2005). Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis. Chemical Engineering Journal, 109(1-3), 147-165. https://doi.org/10.1016/j.cej.2005.02.030.

DOI: 10.1016/j.cej.2005.02.030

Google Scholar

[24] Liu, Q.S., Zheng, T., Wang, P., & Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 31(2), 233-238. https://doi.org/10.1016/j.indcrop.2009.10.011.

DOI: 10.1016/j.indcrop.2009.10.011

Google Scholar

[25] Ma, X., Yang, H., Yu, L., Chen, Y., & Li, Y. (2014). Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation. Materials, 7(6), 4431-4441. https://doi.org/10.3390/ma7064431.

DOI: 10.3390/ma7064431

Google Scholar

[26] Mohamad Nor, N., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. Journal of Environmental Chemical Engineering, 1(4), 658-666. https://doi.org/10.1016/j.jece.2013.09.017.

DOI: 10.1016/j.jece.2013.09.017

Google Scholar

[27] Daud, W.M.A.W., Ali, W.S.W., & Sulaiman, M.Z. (2000). The effects of carbonization temperature on pore development in palm-shell-based activated carbon. Carbon, 38(14), 1925-1932. https://doi.org/10.1016/s0008-6223(00)00028-2.

DOI: 10.1016/s0008-6223(00)00028-2

Google Scholar

[28] Li, X.B., Shupe, T.F., Peter, G.F., Hse, C.Y., & Eberhardt, T.L. (2007). Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Forest Science, 6-12.

Google Scholar

[29] Abdullah, A.H., Kassim, A., Zainal, Z., Hussien, M. Z., Kuang, D., Ahmad, F., & Wooi, O.S. (2001). Preparation and characterization of activated carbon from gelam wood bark (Melaleuca cajuputi). Malaysian journal of analytical sciences, 7(1), 65-68.

Google Scholar

[30] Merzougui, Z., & Addoun, F. (2008). Effect of oxidant treatment of date pit activated carbons application to the treatment of waters. Desalination, 1(222), 394-403.

DOI: 10.1016/j.desal.2007.01.134

Google Scholar

[31] Vargas, A.M.M., Cazetta, A.L., Garcia, C.A., Moraes, J.C.G., Nogami, E.M., Lenzi, E., Almeida, V.C. (2011). Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. Journal of Environmental Management, 92(1), 178-184. https://doi.org/10.1016/j.jenvman.2010.09.013.

DOI: 10.1016/j.jenvman.2010.09.013

Google Scholar

[32] Kalderis, D., Bethanis, S., Paraskeva, P., & Diamadopoulos, E. (2008). Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology, 99(15), 6809-6816. https://doi.org/10.1016/j.biortech.2008.01.041.

DOI: 10.1016/j.biortech.2008.01.041

Google Scholar

[33] Horikawa, T., Kitakaze, Y., Sekida, T., Hayashi, J., & Katoh, M. (2010). Characteristics and humidity control capacity of activated carbon from bamboo. Bioresource Technology, 101(11), 3964-3969. https://doi.org/10.1016/j.biortech.2010.01.032.

DOI: 10.1016/j.biortech.2010.01.032

Google Scholar

[34] Nakagawa, Y., Molina-Sabio, M., & Rodríguez-Reinoso, F. (2007). Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Microporous and Mesoporous Materials, 103(1-3), 29-34. https://doi.org/10.1016/j.micromeso.2007.01.029.

DOI: 10.1016/j.micromeso.2007.01.029

Google Scholar

[35] Girgis, B.S., Yunis, S.S., & Soliman, A.M. (2002). Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1), 164-172. https://doi.org/10.1016/s0167-577x(02)00724-3.

DOI: 10.1016/s0167-577x(02)00724-3

Google Scholar

[36] Alhamed, Y.A. (2006). Activated carbon from dates' stone by ZnCl2 activation. JKAU Eng Sci, 17(2), 5-100 https://doi.org/10.4197/Eng.17-2.4.

DOI: 10.4197/eng.17-2.4

Google Scholar

[37] Astika, I.M., Negara, D.N.K.P., Kencanawati, C.I.P.K., Nindhia, T.G.T., & Hidajat, F. (2019). Proximate and morphology properties of swat bamboo activated carbon carburized under different carbonization temperature. IOP Conference Series: Materials Science and Engineering, 539, 012010. https://doi.org/10.1088/1757-899x/539/1/012010.

DOI: 10.1088/1757-899x/539/1/012010

Google Scholar

[38] Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.051.

DOI: 10.1016/j.rser.2015.02.051

Google Scholar

[39] Irmayani, F., Taryono, T., & Widiastuti, P. (2013). Rancang Bangun Adsorben Komponen Korosif Gas Bumi. Lembaran Publikasi Minyak dan Gas Bumi, 47(1), 31-39.

DOI: 10.29017/lpmgb.45.1.680

Google Scholar

[40] Thommes, M. (2016). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chemistry International, 38(1), 25-25. https://doi.org/10.1515/ci-2016-0119.

DOI: 10.1515/ci-2016-0119

Google Scholar

[41] Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., & Wang, Y. (2013). Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH. Chemical Engineering Journal, 232, 582-590. https://doi.org/10.1016/j.cej.2013.08.011.

DOI: 10.1016/j.cej.2013.08.011

Google Scholar

[42] Cheung, W.H., Lau, S.S.Y., Leung, S.Y., Ip, A.W.M., & McKay, G. (2012). Characteristics of Chemical Modified Activated Carbons from Bamboo Scaffolding. Chinese Journal of Chemical Engineering, 20(3), 515-523. https://doi.org/10.1016/s1004-9541(11)60213-9.

DOI: 10.1016/s1004-9541(11)60213-9

Google Scholar

[43] Mahanim, S.M.A., Asma, I.W., Rafidah, J., Puad, E., & Shaharuddin, H. (2011). Production of activated carbon from industrial bamboo wastes. Journal of Tropical Forest Science, 417-424.

Google Scholar