[1]
Machida, M., Fotoohi, B., Amamo, Y., & Mercier, L. (2012). Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon. Applied Surface Science, 258(19), 7389-7394. https://doi.org/10.1016/j.apsusc.2012.04.042Saleh.
DOI: 10.1016/j.apsusc.2012.04.042
Google Scholar
[2]
Saleh, T. A. (2018). Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. Journal of Cleaner Production, 172, 2123-2132. https://doi.org/10.1016/j.jclepro.2017.11.208.
DOI: 10.1016/j.jclepro.2017.11.208
Google Scholar
[3]
Esteves, I.A.A.C., Lopes, M.S.S., Nunes, P.M.C., & Mota, J.P.B. (2008). Adsorption of natural gas and biogas components on activated carbon. Separation and Purification Technology, 62(2), 281-296. https://doi.org/10.1016/j.seppur.2008.01.027.
DOI: 10.1016/j.seppur.2008.01.027
Google Scholar
[4]
Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., & Araki, T. (2002). Natural gas storage in activated carbon pellets without a binder. Carbon, 40(1), 87-93. https://doi.org/10.1016/s0008-6223(01)00084-7.
DOI: 10.1016/s0008-6223(01)00084-7
Google Scholar
[5]
Azevedo, D.C.S., Araújo, J.C.S., Bastos-Neto, M., Torres, A.E.B., Jaguaribe, E.F., & Cavalcante, C.L. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 100(1-3), 361-364. https://doi.org/10.1016/j.micromeso.2006.11.024.
DOI: 10.1016/j.micromeso.2006.11.024
Google Scholar
[6]
Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B., & Koren, Z. C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products, 47, 153-159. https://doi.org/10.1016/j.indcrop.2013.03.004.
DOI: 10.1016/j.indcrop.2013.03.004
Google Scholar
[7]
Koroviaka, Y., Pinka, J., Tymchenko, S., Rastsvietaiev, V., Astakhov, V., & Dmytruk, O. (2020). Elaborating a scheme for mine methane capturing while developing coal gas seams. Mining of Mineral Deposits, 14(3), 21-27. https://doi.org/10.33271/mining14.03.021.
DOI: 10.33271/mining14.03.021
Google Scholar
[8]
Ferrera-Lorenzo, N., Fuente, E., Suárez-Ruiz, I., & Ruiz, B. (2014). Sustainable activated carbons of macroalgae waste from the Agar-Agar industry. Prospects as adsorbent for gas storage at high pressures. Chemical Engineering Journal, 250, 128-136. https://doi.org/10.1016/j.cej.2014.03.119.
DOI: 10.1016/j.cej.2014.03.119
Google Scholar
[9]
Ademiluyi, F.T., & Braide, O. (2012). Effectiveness of Nigerian bamboo activated with different activating agents on the adsorption of BTX. Journal of Applied Sciences and Environmental Management, 16(3), 267-273.
Google Scholar
[10]
Akpa, N. (2014). Adsorption of benzene on activated carbon from agricultural waste materials. Research Journal of Chemical Sciences, 4, 30-34.
Google Scholar
[11]
Nunthaprechachan, T., Pengpanich, S., & Hunsom, M. (2013). Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon. Chemical Engineering Journal, 228, 263-271. https://doi.org/10.1016/j.cej.2013.04.067.
DOI: 10.1016/j.cej.2013.04.067
Google Scholar
[12]
Petrova, B., Budinova, T., Tsyntsarski, B., Kochkodan, V., Shkavro, Z., & Petrov, N. (2010). Removal of aromatic hydrocarbons from water by activated carbon from apricot stones. Chemical Engineering Journal, 165(1), 258-264. https://doi.org/10.1016/j.cej.2010.09.026.
DOI: 10.1016/j.cej.2010.09.026
Google Scholar
[13]
Águeda, V.I., Crittenden, B.D., Delgado, J.A., & Tennison, S.R. (2011). Effect of channel geometry, degree of activation, relative humidity and temperature on the performance of binderless activated carbon monoliths in the removal of dichloromethane from air. Separation and Purification Technology, 78(2), 154-163. https://doi.org/10.1016/j.seppur.2011.01.036.
DOI: 10.1016/j.seppur.2011.01.036
Google Scholar
[14]
Zhu, X.L., Wang, P.Y., Peng, C., Yang, J., & Yan, X.-. (2014). Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chemical Letters, 25(6), 929-932. https://doi.org/10.1016/j.cclet.2014.03.039.
DOI: 10.1016/j.cclet.2014.03.039
Google Scholar
[15]
Ahmed, M.J., & Theydan, S.K. (2014). Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption. Journal of Analytical and Applied Pyrolysis, 105, 199-208. https://doi.org/10.1016/j.jaap.2013.11.005.
DOI: 10.1016/j.jaap.2013.11.005
Google Scholar
[16]
Cao, W., & Yang, F. (2018). Supercapacitors from high fructose corn syrup-derived activated carbons. Materials Today Energy, 9, 406-415. https://doi.org/10.1016/j.mtener.2018.07.002v.
DOI: 10.1016/j.mtener.2018.07.002
Google Scholar
[17]
Huang, T., Qiu, Z., Wu, D., & Hu, Z. (2015). Bamboo-based activated carbon MnO2 nanocomposites for flexible high-performance supercapacitor electrode materials. International Journal of Electrochemical Science, 10, 6312-6323.
Google Scholar
[18]
Zhang, Y., Zheng, J., Qu, X., & Chen, H. (2007). Effect of granular activated carbon on degradation of methyl orange when applied in combination with high-voltage pulse discharge. Journal of Colloid and Interface Science, 316(2), 523-530. https://doi.org/10.1016/j.jcis.2007.08.013.
DOI: 10.1016/j.jcis.2007.08.013
Google Scholar
[19]
Yagmur, E., Tunc, M. S., Banford, A., & Aktas, Z. (2013). Preparation of activated carbon from autohydrolysed mixed southern hardwood. Journal of Analytical and Applied Pyrolysis, 104, 470-478. https://doi.org/10.1016/j.jaap.2013.05.025.
DOI: 10.1016/j.jaap.2013.05.025
Google Scholar
[20]
Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.051.
DOI: 10.1016/j.rser.2015.02.051
Google Scholar
[21]
Ahmadpour, A., Okhovat, A., & Darabi Mahboub, M. J. (2013). Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data. Journal of Physics and Chemistry of Solids, 74(6), 886-891. https://doi.org/10.1016/j.jpcs.2013.01.036.
DOI: 10.1016/j.jpcs.2013.01.036
Google Scholar
[22]
Das, D., Samal, D. P., & BC, M. (2015). Preparation of Activated Carbon from Green Coconut Shell and its Characterization. Journal of Chemical Engineering & Process Technology, 06(05). https://doi.org/10.4172/2157-7048.1000248.
DOI: 10.4172/2157-7048.1000248
Google Scholar
[23]
Choy, K.K.H., Barford, J.P., & McKay, G. (2005). Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis. Chemical Engineering Journal, 109(1-3), 147-165. https://doi.org/10.1016/j.cej.2005.02.030.
DOI: 10.1016/j.cej.2005.02.030
Google Scholar
[24]
Liu, Q.S., Zheng, T., Wang, P., & Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 31(2), 233-238. https://doi.org/10.1016/j.indcrop.2009.10.011.
DOI: 10.1016/j.indcrop.2009.10.011
Google Scholar
[25]
Ma, X., Yang, H., Yu, L., Chen, Y., & Li, Y. (2014). Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation. Materials, 7(6), 4431-4441. https://doi.org/10.3390/ma7064431.
DOI: 10.3390/ma7064431
Google Scholar
[26]
Mohamad Nor, N., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. Journal of Environmental Chemical Engineering, 1(4), 658-666. https://doi.org/10.1016/j.jece.2013.09.017.
DOI: 10.1016/j.jece.2013.09.017
Google Scholar
[27]
Daud, W.M.A.W., Ali, W.S.W., & Sulaiman, M.Z. (2000). The effects of carbonization temperature on pore development in palm-shell-based activated carbon. Carbon, 38(14), 1925-1932. https://doi.org/10.1016/s0008-6223(00)00028-2.
DOI: 10.1016/s0008-6223(00)00028-2
Google Scholar
[28]
Li, X.B., Shupe, T.F., Peter, G.F., Hse, C.Y., & Eberhardt, T.L. (2007). Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Forest Science, 6-12.
Google Scholar
[29]
Abdullah, A.H., Kassim, A., Zainal, Z., Hussien, M. Z., Kuang, D., Ahmad, F., & Wooi, O.S. (2001). Preparation and characterization of activated carbon from gelam wood bark (Melaleuca cajuputi). Malaysian journal of analytical sciences, 7(1), 65-68.
Google Scholar
[30]
Merzougui, Z., & Addoun, F. (2008). Effect of oxidant treatment of date pit activated carbons application to the treatment of waters. Desalination, 1(222), 394-403.
DOI: 10.1016/j.desal.2007.01.134
Google Scholar
[31]
Vargas, A.M.M., Cazetta, A.L., Garcia, C.A., Moraes, J.C.G., Nogami, E.M., Lenzi, E., Almeida, V.C. (2011). Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. Journal of Environmental Management, 92(1), 178-184. https://doi.org/10.1016/j.jenvman.2010.09.013.
DOI: 10.1016/j.jenvman.2010.09.013
Google Scholar
[32]
Kalderis, D., Bethanis, S., Paraskeva, P., & Diamadopoulos, E. (2008). Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology, 99(15), 6809-6816. https://doi.org/10.1016/j.biortech.2008.01.041.
DOI: 10.1016/j.biortech.2008.01.041
Google Scholar
[33]
Horikawa, T., Kitakaze, Y., Sekida, T., Hayashi, J., & Katoh, M. (2010). Characteristics and humidity control capacity of activated carbon from bamboo. Bioresource Technology, 101(11), 3964-3969. https://doi.org/10.1016/j.biortech.2010.01.032.
DOI: 10.1016/j.biortech.2010.01.032
Google Scholar
[34]
Nakagawa, Y., Molina-Sabio, M., & Rodríguez-Reinoso, F. (2007). Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Microporous and Mesoporous Materials, 103(1-3), 29-34. https://doi.org/10.1016/j.micromeso.2007.01.029.
DOI: 10.1016/j.micromeso.2007.01.029
Google Scholar
[35]
Girgis, B.S., Yunis, S.S., & Soliman, A.M. (2002). Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1), 164-172. https://doi.org/10.1016/s0167-577x(02)00724-3.
DOI: 10.1016/s0167-577x(02)00724-3
Google Scholar
[36]
Alhamed, Y.A. (2006). Activated carbon from dates' stone by ZnCl2 activation. JKAU Eng Sci, 17(2), 5-100 https://doi.org/10.4197/Eng.17-2.4.
DOI: 10.4197/eng.17-2.4
Google Scholar
[37]
Astika, I.M., Negara, D.N.K.P., Kencanawati, C.I.P.K., Nindhia, T.G.T., & Hidajat, F. (2019). Proximate and morphology properties of swat bamboo activated carbon carburized under different carbonization temperature. IOP Conference Series: Materials Science and Engineering, 539, 012010. https://doi.org/10.1088/1757-899x/539/1/012010.
DOI: 10.1088/1757-899x/539/1/012010
Google Scholar
[38]
Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.051.
DOI: 10.1016/j.rser.2015.02.051
Google Scholar
[39]
Irmayani, F., Taryono, T., & Widiastuti, P. (2013). Rancang Bangun Adsorben Komponen Korosif Gas Bumi. Lembaran Publikasi Minyak dan Gas Bumi, 47(1), 31-39.
DOI: 10.29017/lpmgb.45.1.680
Google Scholar
[40]
Thommes, M. (2016). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chemistry International, 38(1), 25-25. https://doi.org/10.1515/ci-2016-0119.
DOI: 10.1515/ci-2016-0119
Google Scholar
[41]
Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., & Wang, Y. (2013). Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH. Chemical Engineering Journal, 232, 582-590. https://doi.org/10.1016/j.cej.2013.08.011.
DOI: 10.1016/j.cej.2013.08.011
Google Scholar
[42]
Cheung, W.H., Lau, S.S.Y., Leung, S.Y., Ip, A.W.M., & McKay, G. (2012). Characteristics of Chemical Modified Activated Carbons from Bamboo Scaffolding. Chinese Journal of Chemical Engineering, 20(3), 515-523. https://doi.org/10.1016/s1004-9541(11)60213-9.
DOI: 10.1016/s1004-9541(11)60213-9
Google Scholar
[43]
Mahanim, S.M.A., Asma, I.W., Rafidah, J., Puad, E., & Shaharuddin, H. (2011). Production of activated carbon from industrial bamboo wastes. Journal of Tropical Forest Science, 417-424.
Google Scholar