SPS Temperature Influence on the Composition, Structure and Magnetic Properties of Hematite Ceramics

Article Preview

Abstract:

Spark Plasma Sintering (SPS), also known as pulsed electric current sintering (PECS) or field assisted sintering technology (FAST), belongs to a class of powder metallurgy methods. Investigations of the effect of thermal, electric and electromagnetic fields arising under the conditions of spark plasma sintering of ceramic materials on their final characteristics are of important fundamental scientific significance. In this regard, the work investigated the effect of the IPA temperature on the structure, composition and magnetic properties of hematite α-Fe2O3 of high purity 99.995%. Changes in the structure and composition of ceramic specimens under SPS conditions in the temperature range 800-1000°C are described by scanning electron microscopy and X-ray phase analysis. The magnetic properties are studied and the regularities of changes of the magnetization (Ms) and coercive force (Hc) under the influence of an external magnetic field for ceramic samples are determined depending on the temperature of the SPS. These results can be considered as initial study of the process of consolidation of materials with weak ferromagnetism under conditions of spark plasma sintering.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

102-108

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hu, Z.-Y., Zhang, Z.-H., Cheng, X.-W., Wang, F.-C., Zhang, Y.-F., & Li, S.-L. (2020). A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Materials & Design, 191, 108662. https://doi.org/10.1016/j.matdes.2020.108662.

DOI: 10.1016/j.matdes.2020.108662

Google Scholar

[2] Papynov, E.K., Shichalin, O.O., Mayorov, V.Y., Modin, E.B., Portnyagin, A.S., Tkachenko, I.A., & Avramenko, V.A. (2017). Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics. Nanotechnologies in Russia, 12(1-2), 49-61. https://doi.org/10.1134/S1995078017010086.

DOI: 10.1134/s1995078017010086

Google Scholar

[3] Simonenko, T.L., Kalinina, M.V., Simonenko, N.P., Simonenko, E.P., Glumov, O.V., Mel'nikova, N.A., & Shilova, O.A. (2018). Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate-temperature solid electrolytes. Ceramics International, 44(16), 19879-19884. https://doi.org/10.1016/j.ceramint.2018.07.249.

DOI: 10.1016/j.ceramint.2018.07.249

Google Scholar

[4] Simonenko, T.L., Kalinina, M.V., Simonenko, N.P., Simonenko, E.P., Glumov, O.V., Mel'nikova, N.A., & Kuznetsov, N.T. (2019). Synthesis of BaCe0.9xZrxY0.1O3 nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. International Journal of Hydrogen Energy, 44(36), 20345-20354. https://doi.org/10.1016/j.ijhydene.2019.05.231.

DOI: 10.1016/j.ijhydene.2019.05.231

Google Scholar

[5] Maglia, F., Tredici, I.G., & Anselmi-Tamburini, U. (2013). Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50nm. Journal of the European Ceramic Society, 33(6), 1045-1066. https://doi.org/10.1016/j.jeurceramsoc.2012.12.004.

DOI: 10.1016/j.jeurceramsoc.2012.12.004

Google Scholar

[6] Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., & Yang, S. (2013). Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Materials & Design, 44, 535-539. https://doi.org/10.1016/j.matdes.2012.08.048.

DOI: 10.1016/j.matdes.2012.08.048

Google Scholar

[7] Teber, A., Schoenstein, F., Têtard, F., Abdellaoui, M., & Jouini, N. (2012). Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application. International Journal of Refractory Metals and Hard Materials, 30(1), 64-70. https://doi.org/10.1016/j.ijrmhm.2011.06.013.

DOI: 10.1016/j.ijrmhm.2011.06.013

Google Scholar

[8] Zavjalov, A.P., Nikiforov, P.A., Kosyanov, D.Y., Zakharenko, A.M., Trukhin, V.O., Talskikh, K.Y., & Papynov, E.K. (2020). Phase Formation and Densification Peculiarities of Hf-C-N Solid Solution Ceramics during Reactive Spark Plasma Sintering. Advanced Engineering Materials, 22(12), 2000482. https://doi.org/10.1002/adem.202000482.

DOI: 10.1002/adem.202000482

Google Scholar

[9] A. Zavjalov, E. Papynov, O. Shichalin, P. Nikiforov, E. Goncharov, Synthesis of Hf-C-N ceramics by spark plasma sintering, EPJ Web Conf. 196 (2019) 00012. https://doi.org/10.1051/epjconf/201919600012.

DOI: 10.1051/epjconf/201919600012

Google Scholar

[10] Zavjalov, A., Papynov, E., Shichalin, O., Nikiforov, P., & Goncharov, E. (2019). Synthesis of Hf-C-N ceramics by spark plasma sintering. EPJ Web of Conferences, 196, 00012. https://doi.org/10.1007/s10971-017-4367-2.

DOI: 10.1051/epjconf/201919600012

Google Scholar

[11] Suffner, J., Lattemann, M., Hahn, H., Giebeler, L., Hess, C., Cano, I.G., & Cao, G. (2010). Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO2-3 mol% Y2O3)-20 wt% Al2O3 Composite Powders. Journal of the American Ceramic Society, 93(9), 2864-2870. https://doi.org/10.1111/j.1551-2916.2010.03752.x.

DOI: 10.1111/j.1551-2916.2010.03752.x

Google Scholar

[12] Garay, J.E. (2010). Current-Activated, Pressure-Assisted Densification of Materials. Annual Review of Materials Research, 40(1), 445-468. https://doi.org/10.1146/annurev-matsci-070909-104433.

DOI: 10.1146/annurev-matsci-070909-104433

Google Scholar

[13] Radajewski, M., Eckner, R., Decker, S., Wendler, M., & Krüger, L. (2018). Influence of Temperature and Strain Rate during Thermomechanical Treatment of a Metastable Austenitic TRIP Steel Compacted by SPS/FAST. Advanced Engineering Materials, 21(5), 1800617. https://doi.org/10.1002/adem.201800617.

DOI: 10.1002/adem.201800617

Google Scholar

[14] Grasso, S., Sakka, Y., & Maizza, G. (2009). Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Science and Technology of Advanced Materials, 10(5), 053001. https://doi.org/10.1088/1468-6996/10/5/053001.

DOI: 10.1088/1468-6996/10/5/053001

Google Scholar

[15] Dudina, D., Bokhonov, B., & Olevsky, E. (2019). Fabrication of Porous Materials by Spark Plasma Sintering: A Review. Materials, 12(3), 541. https://doi.org/10.3390/ma12030541.

DOI: 10.3390/ma12030541

Google Scholar

[16] Munir, Z.A., & Ohyanagi, M. (2020). Perspectives on the spark plasma sintering process. Journal of Materials Science, 56(1), 1-15. https://doi.org/10.1007/s10853-020-05186-1.

Google Scholar

[17] Olevsky, E.A., & Dudina, D.V. (2018). Field-Assisted Sintering. Science and applications. https://doi.org/10.1007/978-3-319-76032-2.

Google Scholar

[18] Anselmi-Tamburini, U., Spinolo, G., Maglia, F., Tredici, I., Holland, T.B., & Mukherjee, A.K. (2013). Field Assisted Sintering Mechanisms, in: R.H.R. Castro, K. van Benthem (Eds.), Sinter. Mech. Conv. Nanodensification F. Assist. Process., Springer, Berlin, Heidelberg, 2013: pp.159-193. https://doi.org/10.1007/978-3-642-31009-6.

DOI: 10.1007/978-3-642-31009-6_8

Google Scholar

[19] Zhang, Z.-H., Liu, Z.-F., Lu, J.-F., Shen, X.-B., Wang, F.-C., & Wang, Y.-D. (2014). The sintering mechanism in spark plasma sintering - Proof of the occurrence of spark discharge. Scripta Materialia, 81, 56-59.. https://doi.org/10.1016/J.SCRIPTAMAT.2014.03.011.

DOI: 10.1016/j.scriptamat.2014.03.011

Google Scholar

[20] Voloshyn, O., Potapchuk, I., Zhevzhyk, O., Yemelianenko, V., Horiachkin, V., Zhovtonoha, M., Semenenko, Ye., & Таtarko, L. (2018). Study of the plasma flow interaction with the borehole surface in the process of its thermal reaming. Mining of Mineral Deposits, 12(3), 28-35. https://doi.org/10.15407/mining12.03.028.

DOI: 10.15407/mining12.03.028

Google Scholar

[21] Anselmi-Tamburini, U., Gennari, S., Garay, J. E., & Munir, Z. A. (2005). Fundamental investigations on the spark plasma sintering/synthesis process. Materials Science and Engineering: A, 394(1-2), 139-148. https://doi.org/10.1016/j.msea.2004.11.019.

DOI: 10.1016/j.msea.2004.11.019

Google Scholar

[22] Potapchuk, I., Zhevzhyk, O., Yemelianenko, V., Zhovtonoha, M., Sekar, M., & Dhunnoo, N. (2019). Experimental study of the thermal reaming of the borehole by axial plasmatron. Mining of Mineral Deposits, 13(1), 103-110. https://doi.org/10.33271/mining13.01.103.

DOI: 10.33271/mining13.01.103

Google Scholar

[23] Fei, C., Zhang, Y., Yang, Z., Liu, Y., Xiong, R., Shi, J., & Ruan, X. (2011). Synthesis and magnetic properties of hard magnetic (CoFe2O4)-soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. Journal of Magnetism and Magnetic Materials, 323(13), 1811-1816. https://doi.org/10.1016/j.jmmm.2011.02.014.

DOI: 10.1016/j.jmmm.2011.02.014

Google Scholar

[24] Yi, F. (2014). Magnetic properties of hard (CoFe2O4)-soft (Fe3O4) composite ceramics. Ceramics International, 40(6), 7837-7840. https://doi.org/http://dx.doi.org/10.1016/j.ceramint. 2013.12.128.

DOI: 10.1016/j.ceramint.2013.12.128

Google Scholar

[25] Wang, Z., & Saxena, S. (2002). Pressure induced phase transformations in nanocrystalline maghemite (γ-Fe2O3). Solid State Communications, 123(5), 195-200. https://doi.org/10.1016/s0038-1098(02)00289-2.

DOI: 10.1016/s0038-1098(02)00289-2

Google Scholar

[26] M. Murakami, K. Hirose, S. Ono, T. Tsuchiya, M. Isshiki, T. Watanuki, High pressure and high temperature phase transitions of FeO, Phys. Earth Planet. Inter. 146 (2004) 273-282. https://doi.org/10.1016/j.pepi.2003.06.011.

DOI: 10.1016/j.pepi.2003.06.011

Google Scholar

[27] Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., & Watanuki, T. (2004). High pressure and high temperature phase transitions of FeO. Physics of the Earth and Planetary Interiors, 146(1-2), 273-282. https://doi.org/10.1016/j.jssc.2012.01.003.

DOI: 10.1016/j.pepi.2003.06.011

Google Scholar

[28] Saravanan, P., Hsu, J.-H., Sivaprahasam, D., & Kamat, S. V. (2013). Structural and magnetic properties of γ-Fe2O3 nanostructured compacts processed by spark plasma sintering. Journal of Magnetism and Magnetic Materials, 346, 175-177. https://doi.org/10.1016/j.jmmm. 2013.07.023.

DOI: 10.1016/j.jmmm.2013.07.023

Google Scholar

[29] Papynov, E.K., Tkachenko, I.A., Portnyagin, A.S., Modin, V.A., & Avramenko, E.B. (2016). Fabrication of magnetic ceramic materials based on nanostructured hematite powder by spark plasma sintering, ARPN Journal of Engineering and Applied Sciences, 11, 5864-5870.

Google Scholar

[30] Mohammed, H.G., Albarody, T.M.B., Mustapha, M., Sultan, N.M., & Al-Jothery, H.K.M. (2021). Investigate the effect of process parameters of magnetic inductively assisted spark plasma sintering (SPS) of iron oxide (Fe3O4) on microstructure behaviour - Part I. Materials Today: Proceedings, 42, 2106-2112. https://doi.org/10.1016/j.matpr.2020.12.293.

DOI: 10.1016/j.matpr.2020.12.293

Google Scholar

[31] J. Adnan, W. O'Reilly, The transformation of γ-Fe2O3 to α-Fe2O3: Thermal activation and the effect of elevated pressure, Phys. Earth Planet. Inter. 110 (1999) 43-50. https://doi.org/10.1016/S0031-9201(98)00128-9.

DOI: 10.1016/s0031-9201(98)00128-9

Google Scholar

[32] Adnan, J., & O'Reilly, W. (1999). The transformation of γ-Fe2O3 to α-Fe2O3: thermal activation and the effect of elevated pressure. Physics of the Earth and Planetary Interiors, 110(1-2), 43-50. https://doi.org/10.1016/j.jallcom.2012.11.102.

DOI: 10.1016/s0031-9201(98)00128-9

Google Scholar

[33] Bertrand, A., Carreaud, J., Delaizir, G., Duclère, J.-R., Colas, M., Cornette, J., & Thomas, P. (2013). A Comprehensive Study of the Carbon Contamination in Tellurite Glasses and Glass-Ceramics Sintered by Spark Plasma Sintering (SPS). Journal of the American Ceramic Society, 97(1), 163-172. https://doi.org/10.1111/jace.12657.

DOI: 10.1111/jace.12657

Google Scholar

[34] Kosyanov, D.Y., Tikhonov, S.A., Vornovskikh, A.A., Yavetskiy, R.P., Dobrotvorskaya, M.V., Doroshenko, A.G., & Ustinov, A.Y. (2020). Influence of carbon contamination on transparency of reactive SPSed Nd3+:YAG ceramics. Journal of Physics: Conference Series, 1461, 012187. https://doi.org/10.1088/1742-6596/1461/1/012187.

DOI: 10.1088/1742-6596/1461/1/012187

Google Scholar

[35] Bernard-Granger, G., Benameur, N., Guizard, C., & Nygren, M. (2009). Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering, Scripta Materialia, 60(3), 164-167. https://doi.org/10.1016/j.scriptamat.2008.09.027.

DOI: 10.1016/j.scriptamat.2008.09.027

Google Scholar

[36] Bokhonov, B.B., Ukhina, A.V., Dudina, D.V., Anisimov, A.G., Mali, V.I., & Batraev, I.S. (2015). Carbon uptake during Spark Plasma Sintering: investigation through the analysis of the carbide footprint, in a Ni-W alloy. RSC Advances, 5(98), 80228-80237. https://doi.org/10.1039/C5RA15439A.

DOI: 10.1039/c5ra15439a

Google Scholar

[37] Berkowitz, A.E., Schuele, W.J., & Flanders, P.J. (1968). Influence of Crystallite Size on the Magnetic Properties of Acicular γ‐Fe2O3Particles. Journal of Applied Physics, 39(2), 1261-1263. https://doi.org/10.1063/1.1656256.

DOI: 10.1063/1.1656256

Google Scholar