[1]
Hu, Z.-Y., Zhang, Z.-H., Cheng, X.-W., Wang, F.-C., Zhang, Y.-F., & Li, S.-L. (2020). A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Materials & Design, 191, 108662. https://doi.org/10.1016/j.matdes.2020.108662.
DOI: 10.1016/j.matdes.2020.108662
Google Scholar
[2]
Papynov, E.K., Shichalin, O.O., Mayorov, V.Y., Modin, E.B., Portnyagin, A.S., Tkachenko, I.A., & Avramenko, V.A. (2017). Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics. Nanotechnologies in Russia, 12(1-2), 49-61. https://doi.org/10.1134/S1995078017010086.
DOI: 10.1134/s1995078017010086
Google Scholar
[3]
Simonenko, T.L., Kalinina, M.V., Simonenko, N.P., Simonenko, E.P., Glumov, O.V., Mel'nikova, N.A., & Shilova, O.A. (2018). Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate-temperature solid electrolytes. Ceramics International, 44(16), 19879-19884. https://doi.org/10.1016/j.ceramint.2018.07.249.
DOI: 10.1016/j.ceramint.2018.07.249
Google Scholar
[4]
Simonenko, T.L., Kalinina, M.V., Simonenko, N.P., Simonenko, E.P., Glumov, O.V., Mel'nikova, N.A., & Kuznetsov, N.T. (2019). Synthesis of BaCe0.9xZrxY0.1O3 nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. International Journal of Hydrogen Energy, 44(36), 20345-20354. https://doi.org/10.1016/j.ijhydene.2019.05.231.
DOI: 10.1016/j.ijhydene.2019.05.231
Google Scholar
[5]
Maglia, F., Tredici, I.G., & Anselmi-Tamburini, U. (2013). Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50nm. Journal of the European Ceramic Society, 33(6), 1045-1066. https://doi.org/10.1016/j.jeurceramsoc.2012.12.004.
DOI: 10.1016/j.jeurceramsoc.2012.12.004
Google Scholar
[6]
Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., & Yang, S. (2013). Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Materials & Design, 44, 535-539. https://doi.org/10.1016/j.matdes.2012.08.048.
DOI: 10.1016/j.matdes.2012.08.048
Google Scholar
[7]
Teber, A., Schoenstein, F., Têtard, F., Abdellaoui, M., & Jouini, N. (2012). Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application. International Journal of Refractory Metals and Hard Materials, 30(1), 64-70. https://doi.org/10.1016/j.ijrmhm.2011.06.013.
DOI: 10.1016/j.ijrmhm.2011.06.013
Google Scholar
[8]
Zavjalov, A.P., Nikiforov, P.A., Kosyanov, D.Y., Zakharenko, A.M., Trukhin, V.O., Talskikh, K.Y., & Papynov, E.K. (2020). Phase Formation and Densification Peculiarities of Hf-C-N Solid Solution Ceramics during Reactive Spark Plasma Sintering. Advanced Engineering Materials, 22(12), 2000482. https://doi.org/10.1002/adem.202000482.
DOI: 10.1002/adem.202000482
Google Scholar
[9]
A. Zavjalov, E. Papynov, O. Shichalin, P. Nikiforov, E. Goncharov, Synthesis of Hf-C-N ceramics by spark plasma sintering, EPJ Web Conf. 196 (2019) 00012. https://doi.org/10.1051/epjconf/201919600012.
DOI: 10.1051/epjconf/201919600012
Google Scholar
[10]
Zavjalov, A., Papynov, E., Shichalin, O., Nikiforov, P., & Goncharov, E. (2019). Synthesis of Hf-C-N ceramics by spark plasma sintering. EPJ Web of Conferences, 196, 00012. https://doi.org/10.1007/s10971-017-4367-2.
DOI: 10.1051/epjconf/201919600012
Google Scholar
[11]
Suffner, J., Lattemann, M., Hahn, H., Giebeler, L., Hess, C., Cano, I.G., & Cao, G. (2010). Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO2-3 mol% Y2O3)-20 wt% Al2O3 Composite Powders. Journal of the American Ceramic Society, 93(9), 2864-2870. https://doi.org/10.1111/j.1551-2916.2010.03752.x.
DOI: 10.1111/j.1551-2916.2010.03752.x
Google Scholar
[12]
Garay, J.E. (2010). Current-Activated, Pressure-Assisted Densification of Materials. Annual Review of Materials Research, 40(1), 445-468. https://doi.org/10.1146/annurev-matsci-070909-104433.
DOI: 10.1146/annurev-matsci-070909-104433
Google Scholar
[13]
Radajewski, M., Eckner, R., Decker, S., Wendler, M., & Krüger, L. (2018). Influence of Temperature and Strain Rate during Thermomechanical Treatment of a Metastable Austenitic TRIP Steel Compacted by SPS/FAST. Advanced Engineering Materials, 21(5), 1800617. https://doi.org/10.1002/adem.201800617.
DOI: 10.1002/adem.201800617
Google Scholar
[14]
Grasso, S., Sakka, Y., & Maizza, G. (2009). Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Science and Technology of Advanced Materials, 10(5), 053001. https://doi.org/10.1088/1468-6996/10/5/053001.
DOI: 10.1088/1468-6996/10/5/053001
Google Scholar
[15]
Dudina, D., Bokhonov, B., & Olevsky, E. (2019). Fabrication of Porous Materials by Spark Plasma Sintering: A Review. Materials, 12(3), 541. https://doi.org/10.3390/ma12030541.
DOI: 10.3390/ma12030541
Google Scholar
[16]
Munir, Z.A., & Ohyanagi, M. (2020). Perspectives on the spark plasma sintering process. Journal of Materials Science, 56(1), 1-15. https://doi.org/10.1007/s10853-020-05186-1.
Google Scholar
[17]
Olevsky, E.A., & Dudina, D.V. (2018). Field-Assisted Sintering. Science and applications. https://doi.org/10.1007/978-3-319-76032-2.
Google Scholar
[18]
Anselmi-Tamburini, U., Spinolo, G., Maglia, F., Tredici, I., Holland, T.B., & Mukherjee, A.K. (2013). Field Assisted Sintering Mechanisms, in: R.H.R. Castro, K. van Benthem (Eds.), Sinter. Mech. Conv. Nanodensification F. Assist. Process., Springer, Berlin, Heidelberg, 2013: pp.159-193. https://doi.org/10.1007/978-3-642-31009-6.
DOI: 10.1007/978-3-642-31009-6_8
Google Scholar
[19]
Zhang, Z.-H., Liu, Z.-F., Lu, J.-F., Shen, X.-B., Wang, F.-C., & Wang, Y.-D. (2014). The sintering mechanism in spark plasma sintering - Proof of the occurrence of spark discharge. Scripta Materialia, 81, 56-59.. https://doi.org/10.1016/J.SCRIPTAMAT.2014.03.011.
DOI: 10.1016/j.scriptamat.2014.03.011
Google Scholar
[20]
Voloshyn, O., Potapchuk, I., Zhevzhyk, O., Yemelianenko, V., Horiachkin, V., Zhovtonoha, M., Semenenko, Ye., & Таtarko, L. (2018). Study of the plasma flow interaction with the borehole surface in the process of its thermal reaming. Mining of Mineral Deposits, 12(3), 28-35. https://doi.org/10.15407/mining12.03.028.
DOI: 10.15407/mining12.03.028
Google Scholar
[21]
Anselmi-Tamburini, U., Gennari, S., Garay, J. E., & Munir, Z. A. (2005). Fundamental investigations on the spark plasma sintering/synthesis process. Materials Science and Engineering: A, 394(1-2), 139-148. https://doi.org/10.1016/j.msea.2004.11.019.
DOI: 10.1016/j.msea.2004.11.019
Google Scholar
[22]
Potapchuk, I., Zhevzhyk, O., Yemelianenko, V., Zhovtonoha, M., Sekar, M., & Dhunnoo, N. (2019). Experimental study of the thermal reaming of the borehole by axial plasmatron. Mining of Mineral Deposits, 13(1), 103-110. https://doi.org/10.33271/mining13.01.103.
DOI: 10.33271/mining13.01.103
Google Scholar
[23]
Fei, C., Zhang, Y., Yang, Z., Liu, Y., Xiong, R., Shi, J., & Ruan, X. (2011). Synthesis and magnetic properties of hard magnetic (CoFe2O4)-soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. Journal of Magnetism and Magnetic Materials, 323(13), 1811-1816. https://doi.org/10.1016/j.jmmm.2011.02.014.
DOI: 10.1016/j.jmmm.2011.02.014
Google Scholar
[24]
Yi, F. (2014). Magnetic properties of hard (CoFe2O4)-soft (Fe3O4) composite ceramics. Ceramics International, 40(6), 7837-7840. https://doi.org/http://dx.doi.org/10.1016/j.ceramint. 2013.12.128.
DOI: 10.1016/j.ceramint.2013.12.128
Google Scholar
[25]
Wang, Z., & Saxena, S. (2002). Pressure induced phase transformations in nanocrystalline maghemite (γ-Fe2O3). Solid State Communications, 123(5), 195-200. https://doi.org/10.1016/s0038-1098(02)00289-2.
DOI: 10.1016/s0038-1098(02)00289-2
Google Scholar
[26]
M. Murakami, K. Hirose, S. Ono, T. Tsuchiya, M. Isshiki, T. Watanuki, High pressure and high temperature phase transitions of FeO, Phys. Earth Planet. Inter. 146 (2004) 273-282. https://doi.org/10.1016/j.pepi.2003.06.011.
DOI: 10.1016/j.pepi.2003.06.011
Google Scholar
[27]
Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., & Watanuki, T. (2004). High pressure and high temperature phase transitions of FeO. Physics of the Earth and Planetary Interiors, 146(1-2), 273-282. https://doi.org/10.1016/j.jssc.2012.01.003.
DOI: 10.1016/j.pepi.2003.06.011
Google Scholar
[28]
Saravanan, P., Hsu, J.-H., Sivaprahasam, D., & Kamat, S. V. (2013). Structural and magnetic properties of γ-Fe2O3 nanostructured compacts processed by spark plasma sintering. Journal of Magnetism and Magnetic Materials, 346, 175-177. https://doi.org/10.1016/j.jmmm. 2013.07.023.
DOI: 10.1016/j.jmmm.2013.07.023
Google Scholar
[29]
Papynov, E.K., Tkachenko, I.A., Portnyagin, A.S., Modin, V.A., & Avramenko, E.B. (2016). Fabrication of magnetic ceramic materials based on nanostructured hematite powder by spark plasma sintering, ARPN Journal of Engineering and Applied Sciences, 11, 5864-5870.
Google Scholar
[30]
Mohammed, H.G., Albarody, T.M.B., Mustapha, M., Sultan, N.M., & Al-Jothery, H.K.M. (2021). Investigate the effect of process parameters of magnetic inductively assisted spark plasma sintering (SPS) of iron oxide (Fe3O4) on microstructure behaviour - Part I. Materials Today: Proceedings, 42, 2106-2112. https://doi.org/10.1016/j.matpr.2020.12.293.
DOI: 10.1016/j.matpr.2020.12.293
Google Scholar
[31]
J. Adnan, W. O'Reilly, The transformation of γ-Fe2O3 to α-Fe2O3: Thermal activation and the effect of elevated pressure, Phys. Earth Planet. Inter. 110 (1999) 43-50. https://doi.org/10.1016/S0031-9201(98)00128-9.
DOI: 10.1016/s0031-9201(98)00128-9
Google Scholar
[32]
Adnan, J., & O'Reilly, W. (1999). The transformation of γ-Fe2O3 to α-Fe2O3: thermal activation and the effect of elevated pressure. Physics of the Earth and Planetary Interiors, 110(1-2), 43-50. https://doi.org/10.1016/j.jallcom.2012.11.102.
DOI: 10.1016/s0031-9201(98)00128-9
Google Scholar
[33]
Bertrand, A., Carreaud, J., Delaizir, G., Duclère, J.-R., Colas, M., Cornette, J., & Thomas, P. (2013). A Comprehensive Study of the Carbon Contamination in Tellurite Glasses and Glass-Ceramics Sintered by Spark Plasma Sintering (SPS). Journal of the American Ceramic Society, 97(1), 163-172. https://doi.org/10.1111/jace.12657.
DOI: 10.1111/jace.12657
Google Scholar
[34]
Kosyanov, D.Y., Tikhonov, S.A., Vornovskikh, A.A., Yavetskiy, R.P., Dobrotvorskaya, M.V., Doroshenko, A.G., & Ustinov, A.Y. (2020). Influence of carbon contamination on transparency of reactive SPSed Nd3+:YAG ceramics. Journal of Physics: Conference Series, 1461, 012187. https://doi.org/10.1088/1742-6596/1461/1/012187.
DOI: 10.1088/1742-6596/1461/1/012187
Google Scholar
[35]
Bernard-Granger, G., Benameur, N., Guizard, C., & Nygren, M. (2009). Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering, Scripta Materialia, 60(3), 164-167. https://doi.org/10.1016/j.scriptamat.2008.09.027.
DOI: 10.1016/j.scriptamat.2008.09.027
Google Scholar
[36]
Bokhonov, B.B., Ukhina, A.V., Dudina, D.V., Anisimov, A.G., Mali, V.I., & Batraev, I.S. (2015). Carbon uptake during Spark Plasma Sintering: investigation through the analysis of the carbide footprint, in a Ni-W alloy. RSC Advances, 5(98), 80228-80237. https://doi.org/10.1039/C5RA15439A.
DOI: 10.1039/c5ra15439a
Google Scholar
[37]
Berkowitz, A.E., Schuele, W.J., & Flanders, P.J. (1968). Influence of Crystallite Size on the Magnetic Properties of Acicular γ‐Fe2O3Particles. Journal of Applied Physics, 39(2), 1261-1263. https://doi.org/10.1063/1.1656256.
DOI: 10.1063/1.1656256
Google Scholar