Chemistry of the Gasification of Carbonaceous Raw Material

Article Preview

Abstract:

The paper represents the studies of the process of carbonaceous raw material gasification. The initial material is represented by bituminous coal of grade H with the carbon (C) content of 79.2-85.3 %. Experimental studies have been used to substantiate the parameters of combustible generator gases (СО, Н2, СН4) output depending on the temperature of a reduction zone of the reaction channel and gas flow velocity along its length. It has been identified that the volume of the raw material input to be used for gasification process changes in direct proportion depending on the amount of burnt-out carbon and blow velocity. The gasification is intensified in terms of equal concentration of oxygen and carbon in the reaction channel of an underground gas generator. The gasification rate is stipulated by the intensity of chemical reactions, which depend immediately on the modes of blow mixture supply. Moreover, they depend directly on the intensity of oxygen supply to the coal mass and removal of the gasification products.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

67-78

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bazaluk, O., Sai, K., Lozynskyi, V., Petlovanyi, M., & Saik, P. (2021). Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea. Energies, 14(5), 1345. https://doi.org/10.3390/en14051345.

DOI: 10.3390/en14051345

Google Scholar

[2] Cassoret, B. (2021). Pollution, Risks and Problems Related to Energy Sources. Energy Transition, 45-56. https://doi.org/10.2172/902817.

DOI: 10.1201/9781003088486-4

Google Scholar

[3] Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23-32. https://doi.org/10.17794/rgn.2020.2.3.

DOI: 10.17794/rgn.2020.2.3

Google Scholar

[4] Khorolskyi, A., Hrinov, V., Mamaikin, O., & Fomychova, L. (2020). Research into optimization model for balancing the technological flows at mining enterprises. E3S Web of Conferences, 201, 01030. https://doi.org/10.1051/e3sconf/202020101030.

DOI: 10.1051/e3sconf/202020101030

Google Scholar

[5] Rysbekov, K., Toktarov, A., Kalybekov, T., Moldabayev, S., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, (168), 00016. https://doi.org/10.1051/e3sconf/202016800016.

DOI: 10.1051/e3sconf/202016800016

Google Scholar

[6] Dychkovskyi, R., Falstinsky, V., Tabachenko, N., Cabana, E., & Korotkova, A. (2017). Issue of hazardous waste dumping in ground. Journal of Donetsk Mining Institute, 71-79. https://10.31474/1999-981x-2017-2-71-79.

DOI: 10.31474/1999-981x-2017-2-71-79

Google Scholar

[7] Khorolskyi, A., Hrinov, V., Mamaikin, O., & Demchenko, Yu. (2019). Models and methods to make decisions while mining production scheduling. Mining of Mineral Deposits, 13(4), 53-62. https://doi.org/10.33271/mining13.04.053.

DOI: 10.33271/mining13.04.053

Google Scholar

[8] Gayko, G., & Kasyanov, V. (2007). Utilizing Thermal Power Potential of Coal by Underground Burning (Gasification) of Thin Coal Layers. International Mining Forum, 97-101. https://doi.org/10.1201/noe0415436700.ch12.

DOI: 10.1201/noe0415436700.ch12

Google Scholar

[9] Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.

DOI: 10.3997/2214-4609.201408382

Google Scholar

[10] Galiyev, D.A., Uteshov, E.T., Tekenova, A.T. (2020). Digitalization of technological and organizational processes of mining operations due to the implementation of the installation system and accounting the key indicators. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 47-53.

DOI: 10.32014/2020.2518-170x.103

Google Scholar

[11] Popovych, V., Telak, J., Telak, O., Malovanyy, M., Yakovchuk, R., & Popovych, N. (2020). Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. Journal of Ecological Engineering, 21(1), 52-62. https://doi.org/10.12911/22998993/113246.

DOI: 10.12911/22998993/113246

Google Scholar

[12] Biletsky, V., Molchanov, P., Sokur, M., Gayko, G., Savyk, V., Orlovskyy, V., & Fursa, R. (2017). Research into the process of preparation of Ukrainian coal by the oil aggregation method. Eastern-European Journal of Enterprise Technologies, 3(5 (87)), 45-53. https://doi.org/10.15587/1729-4061.2017.104123.

DOI: 10.15587/1729-4061.2017.104123

Google Scholar

[13] Sotskov, V., Dereviahina, N., & Malanchuk, L. (2019). Analysis of operation parameters of partial backfilling in the context of selective coal mining. Mining of Mineral Deposits, 13(4), 129-138. https://.

DOI: 10.33271/mining13.04.129

Google Scholar

[14] Medvedieva, O., Lapshyn, Y., Koval, N., Zeynullin, A., & Gupalo, O. (2020). The resource-saving technology to restore the accumulation ability of tailing ponds. E3S Web of Conferences, (168), 00054. https://doi.org/10.1051/e3sconf/202016800054.

DOI: 10.1051/e3sconf/202016800054

Google Scholar

[15] Kalybekov, T., Rysbekov, K., Sandibekov, M., Bi, Y.L., & Toktarov, A. (2020). Substantiation of the intensified dump reclamation in the process of field development. Mining of Mineral Deposits, 14(2), 59-65. https://doi.org/10.33271/mining14.02.059.

DOI: 10.33271/mining14.02.059

Google Scholar

[16] Dychkovskyi, R., Vladyko, O., Maltsev, D., Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73-82. https://doi.org/10.17794/rgn.2018.4.7.

DOI: 10.17794/rgn.2018.4.7

Google Scholar

[17] Gorova, A., Pavlychenko, A., & Borysovs'Ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 169-172. https://doi.org/10.1201/b16354-29.

DOI: 10.1201/b16354-29

Google Scholar

[18] Agaiev, R., Kliuev, E., & Sapunova, I. (2018). Determination of quality parameters of solid carbon-contained raw material in laboratory conditions for its thermal processing. Сollection of Research Papers of the National Mining University, (54), 197-205.

Google Scholar

[19] Pivnyak, G., Falshtynskyi, V., Dychkovskyi, R., Saik, P., Lozynskyi, V., Cabana, E., & Koshka, O. (2020). Conditions of Suitability of Coal Seams for Underground Coal Gasification. Key Engineering Materials, (844), 38-48. https://doi.org/10.4028/www.scientific.net/kem.844.38.

DOI: 10.4028/www.scientific.net/kem.844.38

Google Scholar

[20] Prusek, S., Lubosik, Z., Rajwa, S., Walentek, A., Wrana, A. (2017). Geotechnical monitoring of rock mass and support behaviour around the UCG georeactor: Two case studies in Polish coal mining industry. International Conference on Ground Control in Mining, 321-3280.

Google Scholar

[21] Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16-24. http://dx.doi.org/10.15407/mining10.01.016.

DOI: 10.15407/mining10.01.016

Google Scholar

[22] Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. https://doi.org/10.1051/e3sconf/20186000013.

DOI: 10.1051/e3sconf/20186000013

Google Scholar

[23] Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8.

DOI: 10.1201/b13157-9

Google Scholar

[24] Dychkovskyi, R., Shavarskyi, Ia., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85-94. https://doi.org/10.33271/mining14.02.085.

DOI: 10.33271/mining14.02.085

Google Scholar

[25] Sadovenko, I., Zagrytsenko, A., Podvigina, O., & Dereviagina, N. (2016). Assessment of environmental and technical risks in the process of mining on the basis of numerical simulation of geofiltration. Mining of Mineral Deposits, 10(1), 37-43. http://doi.org/10.15407/mining10.01.037.

DOI: 10.15407/mining10.01.037

Google Scholar

[26] Sadovenko, I., Inkin, O., Dereviahina, N., & Khryplyvets, Y. (2019). Actualization of prospects of thermal usage of groundwater of mines during liquidation. E3S Web of Conferences, 123, 01046. https://doi.org/10.1051/e3sconf/201912301046.

DOI: 10.1051/e3sconf/201912301046

Google Scholar

[27] Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91(1), 40–50. https://doi.org/10.1016/j.fuel.2011.08.024.

DOI: 10.1016/j.fuel.2011.08.024

Google Scholar

[28] Wiatowski, M., & Kapusta, K. (2020). Evolution of tar compounds in raw gas from a pilot-scale underground coal gasification (UCG) trial at Wieczorek mine in Poland. Fuel, 276, 118070. https://doi.org/10.1016/j.fuel.2020.118070.

DOI: 10.1016/j.fuel.2020.118070

Google Scholar

[29] Wang, J., Wang, Z., Xin, L., Xu, Z., Gui, J., & Lu, X. (2017). Temperature field distribution and parametric study in underground coal gasification stope. International Journal of Thermal Sciences, (111), 66-77. https://doi.org/10.1016/j.ijthermalsci.2016.08.012.

DOI: 10.1016/j.ijthermalsci.2016.08.012

Google Scholar

[30] Małkowski, P., Niedbalski, Z., & Hydzik-Wiśniewska, J. (2013). The Change of Structural and Thermal Properties of Rocks Exposed to High Temperatures in the Vicinity of Designed Geo-Reactor. Archives of Mining Sciences, 58(2), 465-480.

DOI: 10.2478/amsc-2013-0031

Google Scholar

[31] Majkherchik, T., Gajko, G.I., Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol, 11, 27–29.

Google Scholar

[32] Mallett, C., Zhang, J. (2017). Gasifier face advance in underground coal gasification. Coal-Energy, Environment and Sustainable Development.

Google Scholar

[33] Kieush, L., & Starovoit, A. (2018). Carbon Nanomaterials from Coal Pyrolysis Products. IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 8915065 https://doi.org/10.1109/nap.2018.8915065.

DOI: 10.1109/nap.2018.8915065

Google Scholar

[34] Koveria, A., Kieush, L., Hrubyak, A., & Kotsyubynsky, V. (2019). Properties of Donetsk basin hard coals and the products of their heat treatment revealed via Mossbauer spectroscopy, Petroleum and Coal, 61(1), 160-168.

Google Scholar

[35] Kieush, L. (2019). Coal pyrolysis products utilisation for synthesis of carbon nanotubes. Petroleum and Coal, 61(3), 461-466.

Google Scholar

[36] Jiang, L., Chen, Z., & Farouq Ali, S. M. (2020). Thermal-hydro-chemical-mechanical alteration of coal pores in underground coal gasification. Fuel, 262, 116543. https://doi.org/10.1016/j.fuel.2019.116543.

DOI: 10.1016/j.fuel.2019.116543

Google Scholar

[37] Hu, Z., Peng, Y., Sun, F., Chen, S., & Zhou, Y. (2021). Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel, 293, 120462. https://doi.org/10.1016/j.fuel.2021.120462.

DOI: 10.1016/j.fuel.2021.120462

Google Scholar

[38] Coal Gasification Technology Survey. (2014). Industrial Coal Gasification Technologies Covering Baseline and High-Ash Coal, 169-287. https://doi.org/10.1002/9783527336913.ch06.

DOI: 10.1002/9783527336913.ch06

Google Scholar

[39] Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. Journal of Sustainable Mining, 12(3), 8-16. https://doi.org/10.7424/jsm130302.

DOI: 10.7424/jsm130302

Google Scholar

[40] Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk Z., & Malanchyk, Ye. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. http://doi.org/10.29227/IM-2018-02-36.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[41] Bogomolov, A.R., Shevyrev, S.A., & Alekseev, M.V. (2013). Prospects for high-temperature gasification of coal and sludge. Thermal Engineering, 60(2), 153-156. https://doi.org/10.1134/s0040601512080022.

DOI: 10.1134/s0040601512080022

Google Scholar

[42] Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., & Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1.

DOI: 10.4028/www.scientific.net/ssp.277.1

Google Scholar

[43] Lozynskyi, V., Dichkovskiy, R., Saik, P., & Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, 277, 66-79. https://doi.org/10.4028/www.scientific.net/ssp.277.66.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[44] Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20.

DOI: 10.1201/b17547-20

Google Scholar

[45] Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy & Environmental Science, 13(10), 3207-3252. https://doi.org/10.1039/d0ee01187h.

DOI: 10.1039/d0ee01187h

Google Scholar

[46] Falshtynskyy, V., Dychkovskyy, R., Lozynskyy, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining, 201-208. https://doi.org/10.1201/b13157-35.

DOI: 10.1201/b13157-36

Google Scholar

[47] Saik, P., Maksymova, E., Lozynskyi, V., Cabana, E., & Petlovanyi, M. (2021). Synergistic approach as an innovative basis for obtaining a natural gas substitute. E3S Web of Conferences, (230), 01022. https://doi.org/10.1051/e3sconf/202123001022.

DOI: 10.1051/e3sconf/202123001022

Google Scholar

[48] Saik, P., Lozynskyi, V., Chemeriachko, Y., & Cabana, E. (2020). Basics of the approach formation to substantiate the temperature field distribution during experimental research on the coal gasification processes. E3S Web of Conferences, (201), 01037. https://doi.org/10.1051/e3sconf/202020101037.

DOI: 10.1051/e3sconf/202020101037

Google Scholar

[49] Timoshenko, V.I. (2018). Quasihomogeneous model of gas-dispensed flows with chemical reactions and phase transitions. Reports of the National Academy of Sciences of Ukraine, (2), 34-42. https://doi.org/10.15407/dopovidi2018.02.034.

DOI: 10.15407/dopovidi2018.02.034

Google Scholar

[50] Petkov, V.Y. & Koryttseva, A.K. (2010). Geterogennyie himiko-tehnologicheskie nekataliticheskie protsessyi v sistemah gaz (zhidkost) - tverdoe telo. Nizhniy Novgorod: Nizhegorodskiy gosuniversitet, 57 p.

Google Scholar

[51] Saik, P., Falshtynskyi, V., Dychkovskyi, R., & Lozynskyi, V. (2015). Revisiting the preservation of uniformity advance of combustible face, Mining of Mineral Deposits, 9(4), 487-492.

DOI: 10.15407/mining09.04.487

Google Scholar

[52] Zasul'skiy, A.N., Konstantinidi, M.D. (1990). Intensity of burning of a combustion-face face at application of technology of underground combustion of coal. Progressivnye tekhnologicheskie skhemy razrabotki poleznykh iskopaemykh, 40-46.

Google Scholar

[53] Kolokolov, O.V., Tabachenko, M.M., Eyshinskiy, O.M., Kuznеtsov, V.G., Kablanov, A.I., & Mikenberg, O.A. (2000). Teoriya i praktika termohimichnoii tehnologiii vidobutku ta pererobki vugillya. Dnipro, NMA Ukraine, 281 p.

Google Scholar