Substantiation into Parameters of Carbon Fuel Production Technology from Brown Coal

Article Preview

Abstract:

Technological solutions for brown coal processing, thermal influence on it at temperature change, thermo vacuum drying are analysed and qualitative and quantitative characteristics of semi – coking products are studied. The parameters of crushing and thermo vacuum drying of brown coal, heat treatment and cascade separation (electrostatic and magnetic) are substantiated. Studies on the manufacture of a pilot batch of carbon fuel with high quality characteristics are performed. Cascade treatment of heat-treated brown coal on electric and magnetic separators allowed to obtain a concentrate with ash content from 17.72 to 22.8%, volatile yield ≤ 35%, higher heat of combustion from 7256.1 to 7523.6 kcal/kg. It is determined that favourable modes of preliminary heat treatment of brown coal samples are in the temperature range of 200-400°С. The established characteristics of the obtained solid fuel correspond to the gas group of thermal coal. The obtained technological solutions for the processing of brown coal can be the basis for the manufacture of an industrial line, taking into account the thermo vacuum installation for further implementation in enterprises using carbon fuel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

90-101

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bondarenko, V., Symanovych, H., Kicki, J., Barabash, M., & Salieiev, I. (2019). The influence of rigidity of the collapsed roof rocks in the mined-out space on the state of the preparatory mine workings. Mining of Mineral Deposits, 13(2), 27-33. https://doi.org/10.33271/mining13.02.027.

DOI: 10.33271/mining13.02.027

Google Scholar

[2] Cherniaiev, O.V. (2017). Systematyzatsiia nerudnykh rodovyshch skelnykh korysnykh kopalyn dlia vdoskonalennia tekhnolohii yikh vidpratsiuvannia. Naukovyi Visnyk NHU, (5), 11-17.

Google Scholar

[3] Buzylo, V., Yavorsk'yy, A., & Yavorsk'yy. V. (2012). Analysis of stress-strain state of rock mass while mining chain pillars by chambers. Geomechanical Processes during Underground Mining, 95-98. https://doi.org/10.1201/b13157-16.

DOI: 10.1201/b13157-17

Google Scholar

[4] Shashenko, O.M., & Kovrov, O.S. (2016). Comparative analysis of two failure criteria for rocks and massifs. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 54-59.

DOI: 10.29202/nvngu

Google Scholar

[5] Abdiev, A.R. (2002). Evaluation of the stressed-strained state of rock massif for brown coal deposit in Kara-Keche. Gornyi Zhurnal, 10, 70-72.

Google Scholar

[6] Dychkovskyi, R., Shavarskyi, Ia., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85-94. https://doi.org/10.33271/mining14.02.085.

DOI: 10.33271/mining14.02.085

Google Scholar

[7] Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 118-121.

DOI: 10.29202/nvngu

Google Scholar

[8] Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Mining Journal, (5), 14-18.

Google Scholar

[9] Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market – contradictions and trends. E3S Web of Conferences, (123), 01044. https://doi.org/10.1051/e3sconf/201912301044.

DOI: 10.1051/e3sconf/201912301044

Google Scholar

[10] Abdykaparov, C.M., & Abdiev, A.R. (2002). State and prospects of the development the brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 16-19.

Google Scholar

[11] Belov, O., Shustov, O., Adamchuk, A. & Hladun, O. (2018). Complex processing of brown coal in Ukraine: history, experience, practice, prospects. Solid State Phenomena, 277, 251-268. https://doi.org/10.4028/www.scientific.net/SSP.277.251.

DOI: 10.4028/www.scientific.net/ssp.277.251

Google Scholar

[12] Savchuk, V., Prykhodchenko, V., Buzylo, V., Prykhodchenko, D., & Tykhonenko, V. (2013). Complex use of coal of Northern part of Donbass. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 185-191. https://doi.org/10.1201/b16354-34.

DOI: 10.1201/b16354-33

Google Scholar

[13] Klimkina, I., Kharytonov, & M., Zhukov, O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbas (Ukraine). Environmental Research, Engineering and Management, 74(2), 82-93 https://doi.org/10.5755/j01.erem.74.2.19940.

DOI: 10.5755/j01.erem.74.2.19940

Google Scholar

[14] Adamenko, Y.O., Arkhypova, L.M., & Mandryk, O.M. (2017). Territorial normative of quality of hydroecosystems of protected territories, Hydrobiological Journal, 53, 50-58. https://doi.org/10.1615/HydrobJ.v53.i2.50.

DOI: 10.1615/hydrobj.v53.i2.50

Google Scholar

[15] Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions' sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138.

Google Scholar

[16] Mandryk, O.M., Arkhypova, L.M., Pukish, A.V., Zelmanovych, A., & Yakovlyuk, K. (2017). Theoretical and methodological foundations of sustainable development of Geosystems. IOP Conference Series: Materials Science and Engineering, 200, 012018 https://doi.org/10.1088/1757-899X/200/1/012018.

DOI: 10.1088/1757-899x/200/1/012018

Google Scholar

[17] Shmandiy, V., Bezdeneznych, L., & Kharlamova, O. (2017). Methods of salt content stabilization in circulating water supply systems. Chemistry & Chemical Technology, 11(2), 242-246. https://doi.org/10.23939/chcht11.02.242.

Google Scholar

[18] Gorova, A., Pavlychenko, A., Borysovs'ka, O., & Krups'ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 207-210. https://doi.org/10.1201/b16354-37.

DOI: 10.1201/b16354-37

Google Scholar

[19] Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43.

DOI: 10.1201/b16354-43

Google Scholar

[20] Kolesnyk, V., Kulikova, D. & Kovrov, S. (2013). In-stream settling tank for effective mine water clarification. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 285-289. https://doi.org/10.1201/b16354-53.

DOI: 10.1201/b16354-52

Google Scholar

[21] Zelenko, Y., Malovanyy, M., & Tarasova, L. (2019). Optimization of heat-and-power plants water purification, Chemistry and Chemical Technology, 13(2), 218-223. https://doi.org/10.23939/chcht13.02.218.

DOI: 10.23939/chcht13.02.218

Google Scholar

[22] Vambol, S., Vambol, V., Sundararajan, M., & Ansari, I. (2019). The nature and detection of unauthorized waste dump sites using remote sensing. Ecological Questions, 30(3)3. https://doi.org/10.12775/EQ.2019.018.

DOI: 10.12775/eq.2019.018

Google Scholar

[23] Popovych, V., Kuzmenko, O., Voloshchyshyn, A., & Petlovanyi, M. (2018). Influence of man-made edaphotopes of the spoil heap on biota. E3S Web of Conferences, 60, 00010. https://doi.org/10.1051/e3sconf/20186000010.

DOI: 10.1051/e3sconf/20186000010

Google Scholar

[24] Gomelya, M.D., Trus, I.M. & Radovenchyk, I.V. (2014). Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100-105.

DOI: 10.33271/nvngu/2020-4/117

Google Scholar

[25] Melnyk, L., Bessarab, O., Matko, S. & Malovanyy, M. (2015). Adsorption of Heavy Metals Ions from Liquid Media by Palygorskite. Chemistry & Chemical Technology, 9(4), 467-470. https://doi.org/10.23939/chcht09.04.467.

DOI: 10.23939/chcht09.04.467

Google Scholar

[26] Kolesnik, V.Ye., Fedotov, V.V. & Buchavy, Yu.V. (2012). Generalized algorithm of diversification of waste rock dump handling technologies in coal mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 138-142.

DOI: 10.29202/nvngu

Google Scholar

[27] Khomenko, О., Sudakov, А., Malanchuk, Z. & Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 35-43.

DOI: 10.29202/nvngu/2018-2/3

Google Scholar

[28] Petrakovska, O., Trehub, M., Trehub, Y., & Yankin, O. (2020). Determining and determinable factors influencing the size of zone of land-use restriction. Mining of Mineral Deposits, 14(1), 107-111. https://doi.org/10.33271/mining14.01.107.

DOI: 10.33271/mining14.01.107

Google Scholar

[29] Malovanyy, M., Lyashok, Y., Podkopayev, S., at al (2020). Environmental technologies for use of coal mining and chemical industry wastes. Journal of Ecological Engineering. 21(2), 85-93. https://doi.org/10.12911/22998993/116339.

DOI: 10.12911/22998993/116339

Google Scholar

[30] Halysh, V., Trus, I., & Gomelya, M. (2020). Utilization of modified biosorbents based on walnut shells in the processes of wastewater treatment from heavy metal ions. Journal of Ecological Engineering. 21(4), 128-133. https://doi.org/10.12911/22998993/119809.

DOI: 10.12911/22998993/119809

Google Scholar

[31] Ovchynnikova, O., Dupliak, O., & Khan, O. (2020). Modelling and forecasting of the region's environmental indicators. E3S Web of Conferences. 166, 13004. https://doi.org/10.1051/e3sconf/202016613004.

DOI: 10.1051/e3sconf/202016613004

Google Scholar

[32] Belmas, I., Kogut, P., Kolosov, D., Samusia, V., Onyshchenko, S. (2019). Rigidity of elastic shell of rubber-cable belt during displacement of cables relatively to drum. International Conference Essays of Mining Science and Practice: E3S Web of Conferences, 109, 00005. https://doi.org/10.1051/e3sconf/201910900005.

DOI: 10.1051/e3sconf/201910900005

Google Scholar

[33] Kolosov, D., Dolgov, O., Bilous, O., Kolosov, A. (2015). The stress-strain state of the belt in the operating changes of the burdening conveyor parameters. New Developments in Mining Engineering, 585-590.

DOI: 10.1201/b19901-101

Google Scholar

[34] Kravets, V., Samusia, V., Kolosov, D., Bas, K., Onyshchenko, S. (2020). Discrete mathematical model of travelling wave of conveyor transport. II International Conference Essays of Mining Science and Practic: E3S Web of Conferences, 168, 00030. https://doi.org/10.1051/e3sconf/202016800030.

DOI: 10.1051/e3sconf/202016800030

Google Scholar

[35] Fomychov, V., Fomychova, L., Khorolskyi, A., Mamaikin, O., & Pochepov, V. (2020). Determining optimal border parameters to design a reused mine working. ARPN Journal of Engineering and Applied Sciences, 15(24), 3039-3049.

Google Scholar

[36] Khorolskyi, A., Hrinov, V., Mamaikin, O., & Fomychova, L. (2020). Research into optimization model for balancing the technological flows at mining enterprises. E3S Web of Conferences, 201, 01030. https://doi.org/10.1051/e3sconf/202020101030.

DOI: 10.1051/e3sconf/202020101030

Google Scholar

[37] Moldabayev, S., Sultanbekova, Z., Adamchuk, A., & Sarybayev, N. (2019). Method of optimizing cyclic and continuous technology complexes location during finalization of mining deep ore open pit mines. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 19(1.3), 407–414. https://doi.org/10.5593/sgem2019/1.3/S03.052.

DOI: 10.5593/sgem2019/1.3/s03.052

Google Scholar

[38] Shustov, O.O., Bielov, O.P., Perkova, T.I., & Adamchuk, A.A. (2018). Substantiation of the ways to use lignite concerning the integrated development of lignite deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-13. https://doi.org/10.29202/nvngu/2018-3/6.

DOI: 10.29202/nvngu/2018-3/6

Google Scholar

[39] Babets, Y.K., Bielov, O.P., Shustov, O.O., Barna, T.V., & Adamchuk, A.A. (2019). The development of technological solutions on mining and processing brown coal to improve its quality. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 36–44. https://doi.org/10.29202/nvngu/2019-6/6.

DOI: 10.29202/nvngu/2019-6/6

Google Scholar

[40] Bondarenko, A.O. (2012). Mathematical modeling of soil dredger absorption processes in the underwater bottomhole. Metallurgical and Mining Industry, 4(3), 149-152.

Google Scholar

[41] Bondarenko, A.O. (2012). Laws of determination of fine materials suction limits in submarine suction dredge face. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 59-64.

DOI: 10.29202/nvngu/2018-3/4

Google Scholar

[42] Bondarenko, A.O. (2018). Theoretical bases of pulp suction process in the shallow dredge underwater face. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 22-29. https://doi.org/10.29202/nvngu/2018-3/4.

DOI: 10.29202/nvngu/2018-3/4

Google Scholar

[43] Jiang, Y., Xie, Q., Zhang, Y., Geng, C., Yu, B., & Chi, J. (2019). Preparation of magnetically separable mesoporous activated carbons from brown coal with Fe3O4. International Journal of Mining Science and Technology, 29(3), 513-519. https://doi.org/10.1016/j.ijmst.2019.01.002.

DOI: 10.1016/j.ijmst.2019.01.002

Google Scholar

[44] Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20.

DOI: 10.1201/b17547-20

Google Scholar

[45] Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. Journal of Sustainable Mining, 12(3), 8-16. https://doi.org/10.7424/jsm130302.

DOI: 10.7424/jsm130302

Google Scholar

[46] Mackay, A.M., & George, G.H. (1991). Petrology. In the Science of Victorian Brown Coal: Structure, Properties and Consequences for Utilization; Durie, R.A., Ed.; Buterworth-Heinemann Ltd.: Oxford, UK.

Google Scholar

[47] Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi.org/10.15407/mining12.02.068.

DOI: 10.15407/mining12.02.068

Google Scholar

[48] Devasahayam, S., Ameen, M.A., Verheyen, T.V., & Bandyopadhyay, Sri. (2015). Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic) Based Super Absorbent Polymersю. Minerals, 5(4), 623-636. https://doi.org/10.3390/min5040512.

DOI: 10.3390/min5040512

Google Scholar

[49] Kutovoy, V.A., Nikolayenko, A.A., Germanov, A.A., & Popov, V.I. (2010). Energy saving method of obtaining of zirconium dioxide from zirconium hydroxide. Materialy, technologii, instrumenty, 15(4), 75-79.

Google Scholar

[50] Kovalevskiy, M.Yu., Kutovoy, V.A., Nikolaenko, A.A., Tkachenko, V.I., & Logvinova, L.V. (2011). Theoretical substantiation of the mechanism of obtaining fi nes using thermal vacuum method. Bulletin of Vladimir Dal Eastern-Ukrainian University, 14(185), 70-79.

Google Scholar

[51] Kutovoy, V.A., Kazarinov, Yu.G., Lutsenko, A.S. & Nikolaenko, A.A., (2013) Current trends processing of brown coal. Modern Science: Researches, Ideas, Results, Technologies, 25-31.

Google Scholar

[52] Mostika Y.S., Karmazin V.I., Grebenyuk L.Z., & Shutov V.Y. (1996). Calculation of power descriptions of working zone of magnetic separator with the cylindrical ferromagnetic elements. Mining informative-analitical bulletin, 3, 56-59.

Google Scholar

[53] Mostika Yu.S. (2003). Kinetics of wet high-gradient magnetic separation. Enriching of minerals. 8(59), 118-129.

Google Scholar

[54] Pilov, P.I., Shutov, V.Yu., Kabakova, N.G., & Shatova, L.A. (2017). Separation of ultradispersed low magnetic materials in superstrong magnetic fields. Zbahachennia korysnykh kopalyn, 68(109), 133-138.

Google Scholar

[55] Zagirnjak, M.V., Branspiz, Ju.A., Shvedchikova, I.A. (2011). Magnitnye separatory. Problemy proektirovanija. Magnetic separators. Problems of designing. Kiev: Tehnika.

Google Scholar