Application of Biomass Pellets for Iron Ore Sintering

Article Preview

Abstract:

The use of biomass as fuel might solve several technological and environmental issues and overcome certain challenges of sinter production. In particular, as revealed by comprehensive analyses, biomass can be used as fuel for iron ore sintering. In this study, we investigate the use of some raw and pyrolysis-processed biomass pellet types, namely wood, sunflower husks (SFH), and straw, for iron ore sintering. In the experiments, the pyrolysis temperature was set to 673, 873, 1073, and 1273 K, and the proportion of biomass in the fuel composition was set to 25%. It was established that the addition of biofuels to the sintering blend leads to an increase in the gas permeability of the sintered layer. The analysis of the complex characteristics of the sintering process and the sinter strength showed the high potential of wood and sunflower husk pellets pyrolyzed at 1073 and 873 K, respectively, for iron ore sintering. The analysis of the macrostructure of the sinter samples obtained using biomaterials revealed that with higher pyrolysis temperatures; the materials tend to have greater sizes and higher amounts of pores and cracks. The composition analyses of the resultant sinters revealed that with higher temperature, the FeO content of the sinters tends to increase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

17-31

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Protocol, K. (1997). United Nations Framework Convention on Climate Change; Kyoto Protocol; United Nations: New York, NY, USA, 19.

DOI: 10.1163/9789004322714_cclc_2019-0165-620

Google Scholar

[2] Mousa, E, Wang, C, Riesbeck, J., & Larsson, M. (2016). Biomass applications in iron and steel industry: an overview of challenges and opportunities. Renewable and Sustainable Energy Reviews, 65, 1247-1266. https://doi.org/10.1016/j.rser.2016.07.061.

DOI: 10.1016/j.rser.2016.07.061

Google Scholar

[3] Suopajärvi, H, Kemppainen, A, Haapakangas, J., & Fabritius, T. (2017). Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes. Journal of Cleaner Production, 148, 709-734. https://doi.org/10.1016/j.jclepro.2017.02.029.

DOI: 10.1016/j.jclepro.2017.02.029

Google Scholar

[4] Wie, R, Zhang, L, Cang, D, Li, J, Li, X., & Xu, C.C. (2017). Current status and potential of biomass utilization in ferrous metallurgical industry. Renewable and Sustainable Energy Reviews, 68, 511-524. https://doi.org/10.1016/j.rser.2016.10.013.

DOI: 10.1016/j.rser.2016.10.013

Google Scholar

[5] Filonenko, O (2018). Sustainable development of Ukrainian iron and steel industry enterprises in regards to the bulk manufacturing waste recycling efficiency improvement. Mining of Mineral Deposits, 12(1), 115-122. https://doi.org/10.15407/mining12.01.115.

DOI: 10.15407/mining12.01.115

Google Scholar

[6] Suopajärvi, H, Umeki, K, Mousa, E, Hedayati, A, Romar, H, Kemppainen, A, Wang, C, Phounglamcheik, A, Tuomikoski, S, Norberg N, Andeforsm A, Öhman, M, Lassi, U., & Fabritius, T. (2018). Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies. Applied Energy, 213, 384–407. https://doi.org/10.1016/j.apenergy.2018.01.060.

DOI: 10.1016/j.apenergy.2018.01.060

Google Scholar

[7] Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering, 27-32. https://doi.org/10.1201/b19901-6.

DOI: 10.1201/b19901-6

Google Scholar

[8] European Commission, EUR 25151 (2013). Alternate carbon sources for sintering of iron ore (Acasos), Luxembourg: Publications Office of the European Union, 71. https://doi.org/10.2777/58105.

Google Scholar

[9] Ooi, T.C, Aries, E, Ewan, B.C.R, Thompson, D, Anderson, D.R, Fisher, R, Fray, T., & Tognarelli, D. (2008). The study of sunflower seed husks as a fuel in the iron ore sintering process. Minerals Engineering, 21, 167-177. https://doi.org/10.1016/j.mineng.2007.09.005.

DOI: 10.1016/j.mineng.2007.09.005

Google Scholar

[10] Jha, G, Soren, S., & Mehta, K.D. (2020). Partial substitution of coke breeze with biomass and charcoal in metallurgical sintering. Fuel, 278, 118350. https://doi.org/10.1016/j.fuel.2020.118350.

DOI: 10.1016/j.fuel.2020.118350

Google Scholar

[11] Demirbaş, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76(5), 431–434. https://doi.org/10.1016/S0016-2361(97)85520-2.

DOI: 10.1016/s0016-2361(97)85520-2

Google Scholar

[12] Vassilev, S.V, Baxter, D, Andersen, L.K., & Vassileva, C.G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933. https://doi.org/10.1016/j.fuel.2009.10.022.

DOI: 10.1016/j.fuel.2009.10.022

Google Scholar

[13] Vassilev, S.V, Baxter, D, Andersen, L.K, Vassileva, C.G., & Morgan. T.J. (2012). An overview of the organic and inorganic phase composition of biomass. Fuel, 94, 1–33. https://doi.org/10.1016/j.fuel.2011.09.030.

DOI: 10.1016/j.fuel.2011.09.030

Google Scholar

[14] Zubkova, V, Strojwas, A, Bielecki, M, Kieush, L.m & Koverya A. (2019). Comparative study of pyrolytic behavior of the biomass wastes originating in the Ukraine and potential application of such biomass. Part 1. Analysis of the course of pyrolysis process and the composition of formed products. Fuel, 254, 115688. https://doi.org/10.1016/j.fuel.2019.115688.

DOI: 10.1016/j.fuel.2019.115688

Google Scholar

[15] Pandey, A, Negi, S, Binod, P., & Larroche, C. (2015). Handbook of pretreatment of biomass, processes and technologies. Elsevier.

Google Scholar

[16] El-Hussiny, N.A, Khalifa, A.A, El-Midany, A.A, Ahmed, A.A., & Shalabi, M.E.H. (2015). Effect of replacement coke breeze by charcoal on technical operation of iron ore sintering. Journal of Scientific and Engineering Research, 6, 681-686.

Google Scholar

[17] Cheng, Z, Yang, J, Zhou, L, Liu, Y, Guo, Z., & Wang, Q. (2016). Experimental study of commercial charcoal as alternative fuel for coke breeze in iron ore sintering process. Energy Conversion and Management, 125, 254-263. https://doi.org/10.1016/j.enconman.2016.06.074.

DOI: 10.1016/j.enconman.2016.06.074

Google Scholar

[18] Cheng, Z, Wei, S, Guo, Z, Yang, J. & Wang, Q. (2017). Improvement of heat pattern and sinter strength at high charcoal proportion by applying ultra-lean gaseous fuel injection in iron ore sintering process. Journal of Cleaner Production, 161, 1374-1384. https://doi.org/10.1016/j.jclepro.2017.07.017.

DOI: 10.1016/j.jclepro.2017.07.017

Google Scholar

[19] Fan, X, Ji Z, Gan, M, Chen, X, Li, Q. & Jiang, T. (2016). Influence of charcoal replacing coke on microstructure and reduction properties of iron ore sinter. Ironmaking & Steelmaking, 43, 5-10. https://doi.org/10.1179/1743281215Y.0000000040.

DOI: 10.1179/1743281215y.0000000040

Google Scholar

[20] Abreu, G.C, de Carvalho, Jr.Ja, da Silva, B.E.C., & Pedrini, R.H. (2015). Operational and environmental assessment on the use of charcoal in iron ore sinter production. Journal of Cleaner Production, 101, 387-394. https://doi.org/10.1016/j.jclepro.2015.04.015.

DOI: 10.1016/j.jclepro.2015.04.015

Google Scholar

[21] Kawaguchi, T., & Hara, M. (2013). Utilization of biomass for iron ore sintering. ISIJ International, 53, 1599-1606. https://doi.org/10.2355/isijinternational.53.1599.

DOI: 10.2355/isijinternational.53.1599

Google Scholar

[22] Kieush, L, Yaholnyk, M, Boyko, M, Koveria, A., & Ihnatenko, V. (2019). Study of biomass utilization in the iron ore sintering. Acta Metallurgica Slovaca, 25, 55-64. https://doi.org/10.12776/ams.v1i1.1225.

DOI: 10.36547/ams.25.1.8

Google Scholar

[23] Kieush, L., Boyko, M., Koveria, A., Khudyakov, O., & Ruban, A. (2019). Utilization of the prepyrolyzed technical hydrolysis lignin as a fuel for iron ore sintering. Eastern-European Journal of Enterprise Technologies, 1/6 (97), 84-89. https://doi.org/10.15587/1729-4061.2019.154082.

DOI: 10.15587/1729-4061.2019.154082

Google Scholar

[24] Kieush, L, Boyko, M, Koveria, A, Yaholnyk, M., & Poliakova, N. (2020). Manganese sinter production with wood biomass application. Key Engineering Materials, 844, 124-134. https://doi.org/10.4028/www.scientific.net/KEM.844.124.

DOI: 10.4028/www.scientific.net/kem.844.124

Google Scholar

[25] Revin, V, Novokuptsev, N., & Kadimaliev, D. (2016). Preparation of biocomposites using sawdust and lignosulfonate with a culturе liquid of levan producer Azotobacter vinelandii as a bonding agent. BioResources, 11, 3244-3258. https://doi.org/10.15376/biores.11.2.3244-3258.

DOI: 10.15376/biores.11.2.3244-3258

Google Scholar

[26] Li, H, Deng, Y, Liang, J., & Dai, Y. (2016). Direct preparation of hollow nanospheres with kraft lignin: a facile strategy for effective utilization of biomass waste. BioResources, 11, 3073-3083. https://doi.org/10.15376/biores.11.2.3073-3083.

DOI: 10.15376/biores.11.2.3073-3083

Google Scholar

[27] Wang, X-H, Chen, H-P, Ding, X-J, Yang, H-P, Zhang, S-H., & Shen, Y-Q. (2009). Properties of gas and char from microwave pyrolysis of pine sawdust. Bioresource Technology, 4, 946–959.

Google Scholar

[28] Wallace, C.A, Afzal, M.T., & Saha, G.C. (2019). Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing, 6, 33. https://doi.org/10.1186/s40643-019-0268-2.

DOI: 10.1186/s40643-019-0268-2

Google Scholar

[29] González, M.E, Romero-Hermoso, L, González, A, Hidalgo, P, Meier, S, Navia, R., & Cea, M. (2017). Effects of pyrolysis conditions on physicochemical properties of oat hull derived biochar. BioResources, 12, 2040-2057. https://doi.org/10.15376/biores.12.1.2040-2057.

DOI: 10.15376/biores.12.1.2040-2057

Google Scholar