Proposal of an Innovative Benchmark for the Evaluation of 3D Printing Accuracy for Photopolymers

Article Preview

Abstract:

In recent years, the diffusion of additive manufacturing (AM) or 3D printing (3DP) techniques for polymers have been boosted by the expiration of earlier patents from the last century and the development of low-cost machines. Since these technologies become more widespread, there is a need to assess the capability and accuracy of low-cost machines in terms of dimensional and geometric tolerance. To this aim, this work proposes an innovative reference part for benchmarking layerwise processes that involve the curing of photopolymers. The geometry of the part is conceived to include several classical shapes that are easily measurable for defining the part accuracy in terms of ISO IT grades and GD&T values. Two replicas of the reference part were fabricated by stereolithography (SLA) and digital light processing (DLP) using two machines and related proprietary materials by Sharebot Company. The replicas were printed with a layer thickness of 50 μm for the DLP process and 100 μm for the SLA one. The results of dimensional measurements of the replicas, that were carried out using a Coordinate Measuring Machine (CMM), show that the geometric accuracy of the time-consuming DLP process is slightly better than that of stereolithography.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

279-290

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja and F. Martina, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann. Manuf. Technol. 65(2) (2016) 737-760.

DOI: 10.1016/j.cirp.2016.05.004

Google Scholar

[2] T. Vaneker, A. Bernard, G. Moroni, I. Gibson and Y. Zhang, Design for additive manufacturing: Framework and methodology, CIRP Annals, 69(2), CIRP Ann. Manuf. Technol. 69(2) (2020) 578-599.

DOI: 10.1016/j.cirp.2020.05.006

Google Scholar

[3] F. Calignano, D. Manfredi, E.P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, P. Fino, Overview on additive manufacturing technologies, Proc. IEEE 105(4) (2017) 593-612.

DOI: 10.1109/jproc.2016.2625098

Google Scholar

[4] E.P. Gargiulo, Stereolithography process accuracy: user experience, Proceedings of the 1st European Conference on Rapid Prototyping (1992) 187-207.

Google Scholar

[5] T.H.C. Childs and N.P. Juster, Linear and geometric accuracies from layer manufacturing, CIRP Ann. Manuf. Technol. 43(1) (1994) 163-166.

DOI: 10.1016/s0007-8506(07)62187-8

Google Scholar

[6] R. Ippolito, L. Iuliano and A. Gatto, Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish, CIRP Ann. Manuf. Technol. 44(1) (1995) 157-160.

DOI: 10.1016/s0007-8506(07)62296-3

Google Scholar

[7] F. Xu, Y.S. Wong and H.T. Loh, Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing, J. Manuf. Syst. 19(5) (2000) 283-296.

DOI: 10.1016/s0278-6125(01)89001-4

Google Scholar

[8] M. Mahesh, Y.S. Wong, J.Y.H. Fuh and H.T. Loh, Benchmarking for comparative evaluation of RP systems and processes, Rapid Prototyping J. 10(2) (2004) 123-135.

DOI: 10.1108/13552540410526999

Google Scholar

[9] D. Dimitrov, W. van Wijck, K. Schreve and N. de Beer, Investigating the achievable accuracy of three dimensional printing, Rapid Prototyping J. 12(1) (2006) 42-52.

DOI: 10.1108/13552540610637264

Google Scholar

[10] E. Bassoli, A. Gatto, L. Iuliano and M.G. Violante, 3D printing technique applied to rapid casting, Rapid Prototyping J. 13(3) (2007) 148-155.

DOI: 10.1108/13552540710750898

Google Scholar

[11] D. Scaravetti, P. Dubois and R. Duchamp, Qualification of rapid prototyping tools: proposition of a procedure and a test part, Int. J. Adv. Manuf. Tech. 38 (2008) 683-690.

DOI: 10.1007/s00170-007-1129-2

Google Scholar

[12] R. Singh and J.P. Singh, Comparison of rapid casting solutions for lead and brass alloys using three-dimensional printing, P. I. Mech. Eng. C.-J. Mec. 223(9) 2117-2123.

DOI: 10.1243/09544062jmes1387

Google Scholar

[13] E. Bassoli and E. Atzeni, Direct metal rapid casting: mechanical optimization and tolerance calculation, Rapid Prototyping J. 15(4) (2009) 238-243.

DOI: 10.1108/13552540910979758

Google Scholar

[14] T. Brajlih, B. Valentan, J. Balic and I. Drstvensek, Speed and accuracy evaluation of additive manufacturing machines, Rapid Prototyping J. 17(1) (2011) 64-75.

DOI: 10.1108/13552541111098644

Google Scholar

[15] H.K. Garg and R. Singh, Pattern development for manufacturing applications with fused deposition modelling-a case study, Int. J. Automot. Mech. Eng. 7(1) (2013) 981-992.

DOI: 10.15282/ijame.7.2012.14.0079

Google Scholar

[16] S. Moylan, J. Slotwinski, A. Cooke, K. Jurrens and M.A. Donmez, An additive manufacturing test artifact, J. Res. Natl. Inst. Stan. 119 (2014) 429-459.

DOI: 10.6028/jres.119.017

Google Scholar

[17] W.M. Johnson, M. Rowell, B. Deason and M. Eubanks, Comparative evaluation of an open-source FDM system, Rapid Prototyping J. 20(3) (2014) 205-214.

DOI: 10.1108/rpj-06-2012-0058

Google Scholar

[18] R. Singh and G. Singh, Investigations for statistically controlled investment casting solution of FDM-based ABS replicas, Rapid Prototyping J. 20(3) (2014) 215-220.

DOI: 10.1108/rpj-03-2013-0036

Google Scholar

[19] F.A. Cruz Sanchez, H. Boudaoud, L. Muller and M. Camargo, Towards a standard experimental protocol for open source additive manufacturing, Virtual Phys. Prototyp. 9(3) (2014) 151-167.

DOI: 10.1080/17452759.2014.919553

Google Scholar

[20] P. Minetola, L. Iuliano and G. Marchiandi, Benchmarking of FDM machines through part quality using IT grades, Proc. CIRP 41 (2016) 1027-1032.

DOI: 10.1016/j.procir.2015.12.075

Google Scholar

[21] K. Kitsakis, J. Kechagias, N. Vaxevanidis and D. Giagkopoulos, Tolerance Analysis of 3d-MJM parts according to IT grade, IOP Conf. Ser. Mater. Sci. Eng. 161(1) (2016) 012024.

DOI: 10.1088/1757-899x/161/1/012024

Google Scholar

[22] L. Rebaioli and I. Fassi, A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes, Int. J. Adv. Manuf. Technol. 93(5) (2017) 2571–2598.

DOI: 10.1007/s00170-017-0570-0

Google Scholar

[23] P. Minetola, M. Galati, L. Iuliano, E. Atzeni and A. Salmi, The Use of Self-replicated Parts for Improving the Design and the Accuracy of a Low-cost 3D Printer, Proc. CIRP 67 (2018) 203-208.

DOI: 10.1016/j.procir.2017.12.200

Google Scholar

[24] J. Gulanová, I. Kister, N. Káčer and L. Gulan, A comparative study of various AM technologies based on their accuracy, Proc. CIRP 67 (2018) 238–243.

DOI: 10.1016/j.procir.2017.12.206

Google Scholar

[25] G. Papazetis and G.C. Vosniakos, Feature-based process parameter variation in continuous paths to improve dimensional accuracy in three-dimensional printing via material extrusion, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233(12) (2019) 2241-2250.

DOI: 10.1177/0954405419838361

Google Scholar

[26] S.J. Jin, D.Y. Kim, J.H. Kim and W.C. Kim, Accuracy of Dental Replica Models Using Photopolymer Materials in Additive Manufacturing: In Vitro Three-Dimensional Evaluation, 2019 J. Prosthodont. 28(2) (2019) e557–e562.

DOI: 10.1111/jopr.12928

Google Scholar

[27] P. Minetola, M. Galati, F. Calignano, L. Iuliano, G. Rizza and L. Fontana, Comparison of dimensional tolerance grades for metal AM processes, Proc. CIRP 88 (2020) 399-404.

DOI: 10.1016/j.procir.2020.05.069

Google Scholar

[28] P. Minetola, F. Calignano and M. Galati, Comparing geometric tolerance capabilities of additive manufacturing systems for polymers, Addit. Manuf. 32 (2020) 101103.

DOI: 10.1016/j.addma.2020.101103

Google Scholar

[29] V.M.R. Santos, A. Thompson, D. Sims-Waterhouse, I. Maskery, P. Woolliams and R. Leach, Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach, Addit. Manuf. 32 (2020) 100964.

DOI: 10.1016/j.addma.2019.100964

Google Scholar

[30] M.A. de Pastre, S.C.T. Tagne and N. Anwer, Test artefacts for additive manufacturing: A design methodology review, CIRP J. Manuf. Sci. Technol. 31 (2020) 14-24.

DOI: 10.1016/j.cirpj.2020.09.008

Google Scholar

[31] ISO 286-1:1988, ISO system of limits and fits - Part 1: Basis of tolerances, deviations and fit, International Organization for Standardization (1988).

DOI: 10.3403/00373808

Google Scholar

[32] ISO 286-2:2010, Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts, International Organization for Standardization (2010).

DOI: 10.3403/30163095u

Google Scholar

[33] ISO 1101:2017, Geometrical product specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out, International Organization for Standardization (2017).

DOI: 10.3403/30303642

Google Scholar

[34] ISO 17450-1:2011, Geometrical product specifications (GPS) - General concepts - Part 1: Model for geometrical specification and verification, International Organization for Standardization (2011).

DOI: 10.3403/30198177

Google Scholar

[35] ISO 17450-3:2016, Geometrical product specifications (GPS) – General concepts - Part 3: Toleranced features, International Organization for Standardization (2016).

DOI: 10.3403/30272937

Google Scholar