Impact of Cutting Parameters on Cutting Force of AISI 410 and AISI 420 MSS during CNC Dry Milling

Article Preview

Abstract:

A CNC dry milling experiment was conducted for the machining parameter optimization of two grades of Martensitic Stainless steel (MSS). Optimization is done by employing Taguchi method (S/N ratio and ANOVA). The specimens used are MSS grades 410 and 420.The experiments were designed by employing L9 orthogonal array for 3 levels of feed and spindle speeds. The impact of these parameters on cutting force was analyzed. The analysis reveals that spindle speed constitute the maximum impact on cutting force for both MSS grades. Optimum cutting parameters are obtained at 30 mm/min (feed rate) and 1500 rpm (spindle speed). Due to higher Chromium and Carbon content in AISI 420 MSS resulted higher cutting force values compared with AISI 410 MSS. Optimum values of cutting parameters are estimated for improving productivity and quality. The predicted values at optimal conditions are estimated. The results indicate a good conformity with the outcome of experiment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

291-297

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Palanisamy, A. Devaraju, S. Harikrishnan, N. Manikandan, Machinability Studies on CNC Turning of PH Stainless Steel with Coated Inserts, Mater. Today Proc. 5 (2018) 14520-14525.

DOI: 10.1016/j.matpr.2018.03.040

Google Scholar

[2] D.P. Selvaraj, P. Chandramohan, M. Mohanraj, Optimization of surface roughness cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method, Measurement. 49 (2014) 205-215.

DOI: 10.1016/j.measurement.2013.11.037

Google Scholar

[3] A.X. Patxi, A. Lazcano, R.B. Sela, J.A. Pedro, An optimization methodology for material databases to improve cutting force predictions when milling martensitic stainless steel JETHETE-M152, Procedia CIRP. 77 (2018) 287-290.

DOI: 10.1016/j.procir.2018.09.017

Google Scholar

[4] D.P. Selvaraj, P. Chandramohan, P. Chandrasekar, Experimental investigations of nitrogen alloyed duplex stainless steel in dry milling process, J. Eng. Sci. Technol. 13 (2018) 321-331.

Google Scholar

[5] C. Bruni, F.G. Forcelles, M. Simoncini, Effect of the lubrication-cooling technique, insert technology and machine bed material on the work part surface finish and tool wear in finish turning of AISI 420B, Int. J. Mach. Tools Manuf. 46 (2006) 1547-1554.

DOI: 10.1016/j.ijmachtools.2005.09.007

Google Scholar

[6] U. Alper, D. Furkan, A. Erhan, Applying Minimum Quantity Lubrication (MQL) Method on Milling of Martensitic Stainless Steel by Using Nano MoS2 Reinforced Vegetable Cutting Fluid, Procedia –Social Behav. Sci. 195 (2015) 2742-2747.

DOI: 10.1016/j.sbspro.2015.06.384

Google Scholar

[7] D.P. Selvaraj, P. Chandramohan, M. Mohanraj, P. K. Rajesh, Experimental investigations on surface roughness, cutting force and tool wear of duplex stainless steel in end milling using Taguchi method, Int. Rev. Mech. Eng. 7 (2013) 1133-1141.

DOI: 10.1016/j.measurement.2013.11.037

Google Scholar

[8] D.P. Selvaraj, Optimization of cutting force of duplex stainless steel in dry milling operation, Mater. Today Proc. 4 (2017) 11141-11147.

DOI: 10.1016/j.matpr.2017.08.078

Google Scholar

[9] K. Wua, G.K. Liu, L. Wang, B.F. Xu, Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel, Vacuum. 84 (2010) 870–875.

DOI: 10.1016/j.vacuum.2009.12.001

Google Scholar

[10] I.A. Nasery, H. Saghafian, G. Borhani, The effect of heat treatment on mechanical properties and corrosion behavior of AISI 420 martensitic stainless steel, J. Alloys Comp. 509 (2011) 3931-3936.

DOI: 10.1016/j.jallcom.2010.12.174

Google Scholar

[11] I.M. Hutchings, A.N. Stevenson, Wear of hard facing white cast irons by solid particle erosion, Wear. 186–187 (1995) 150–158.

DOI: 10.1016/0043-1648(95)07184-9

Google Scholar

[12] S. Gyanesh, K.P. Rabindra, Optimization of cutting parameters of turning for hardness of AISI 4140 alloy steel, Mater. Today Proc. 18 (2019) 3582-3589.

DOI: 10.1016/j.matpr.2019.07.289

Google Scholar

[13] J. Kanchana, V. Prasath, V. Krishnaraj, P.B. Geetha, Multi response optimization of process parameters using grey relational analysis for milling of hardened Custom 465 steel, Procedia Manuf. 30 (2019) 451-58.

DOI: 10.1016/j.promfg.2019.02.064

Google Scholar

[14] S. Zhang, J.F. Li, Y.W. Wang, Tool life and cutting forces in end milling Inconel 718 under dry 13 and minimum quantity cooling lubrication cutting conditions, J. Cleaner Prod. 32 (2012) 81-87.

DOI: 10.1016/j.jclepro.2012.03.014

Google Scholar

[15] J.A. Ghani, I.A. Choudhury, H.H. Hassan, Application of Taguchi method in the optimization of end milling parameters, J. Mater. Process. Technol. 145 (2004) 84-92.

DOI: 10.1016/s0924-0136(03)00865-3

Google Scholar

[16] M.C.R. Karthik, L.M. Rashmi, A.H. Mervin, S.R. Shrikantha, Dataset on flank wear, cutting force and cutting temperature assessment of austenitic stainless steel AISI 316 under dry, wet and cryogenic during face milling operation, Data in brief. 26 (2019) 104389.

DOI: 10.1016/j.dib.2019.104389

Google Scholar

[17] S.W. Chowski, R.W. Maruda, S. Barrans, G.M. Nieslony, Optimization of machining parameters during ball end milling of hardened steel with various surface inclinations, Measurement. 111 (2017) 18-28.

DOI: 10.1016/j.measurement.2017.07.020

Google Scholar