A Comparative Experimental Study on Machining Performance of Aluminium against Advanced Diamond Coated Cutting Tool Inserts

Article Preview

Abstract:

Carbide tools with mono/multilayer coating such as TiN, TiC, TiAIN, TiB2 and Al2O3 on inserts of WC-Co generated key success for machining of ferrous materials without coolant/lubrication. So far dry machining of aluminium, manufacturing industries such as automobile and aerospace engineering are facing considerable challenges. Exploration of correct cutting tool for machining of aluminium still persists in the present day context. This paper experimentally investigated the affinity and performance of different cutting tool materials available in local tool shopping center along with the diamond coated tool insert prepared and developed in our own HFCVD reactor for machining of aluminium in dry condition. Finally it is revealed that, due to the low chemical affinity, small magnitude of cutting force, chemical inertness and remarkable anti-welding characteristics, diamond coated tool displayed improved performance as compared to other tools.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

298-308

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Matsumoto, Y. Sato, M. Tsutumi, N. Setaka, Growth of diamond particles from methane-hydrogen gas, J. Mater. Sci. 17-11(1982) 3106-3112.

DOI: 10.1007/bf01203472

Google Scholar

[2] B. Lux, R. Haubner, C. Wohlrab, Chemically vapour-deposited hard coatings: Applications and selection guidelines, Surf. Coat. Technolo. 38-3 (1989) 267-280.

DOI: 10.1016/0257-8972(89)90089-3

Google Scholar

[3] B. Lux, R. Haubner, R. Davies, Diamond Films and Coatings, NOYES Publications, Park Ridge, N J. (1992).

Google Scholar

[4] K. Shibuki, M. Yagi, K. Saijo, S. Takatsu, Adhesion strength of diamond films on cemented carbide substrates, Surf. Coat. Technolo. 36 (1988) 295-302.

DOI: 10.1016/0257-8972(88)90159-4

Google Scholar

[5] F. A. Almeida, A. J. S. Fernandes, F. J. Oliveira, R. F. Silva, Semi-orthogonal turning of hard metal with CVD diamond and PCD inserts at different cutting angles, Vacuum 83-10 (2009) 1218-1223.

DOI: 10.1016/j.vacuum.2009.03.029

Google Scholar

[6] V. Derflinger, H. Brändle, H. Zimmermann, New hard/lubricant coating for dry machining, Surf. Coat. Technolo. 113-3 (1999) 286–292.

DOI: 10.1016/s0257-8972(99)00004-3

Google Scholar

[7] D. U. Braga, A. E. Diniz, G. W. A. Miranda, N. L. Coppini, Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys, J. Mater. Process. Technolo. 122-1 (2002) 127–138.

DOI: 10.1016/s0924-0136(01)01249-3

Google Scholar

[8] P. S. Sreejith, B. K. A. Ngoi, Dry machining: Machining of the future, J. Mater. Process. Technolo. 101 (2000) 287–291.

DOI: 10.1016/s0924-0136(00)00445-3

Google Scholar

[9] M. Nouari, G. List, F. Girot, D. Coupard, Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys, Wear 255 (2003) 1359–1368.

DOI: 10.1016/s0043-1648(03)00105-4

Google Scholar

[10] K.N. Strafford, Tribological properties of coatings—expectations, performance and the design dilemma, Surf. Coat. Technolo. 81-1 (1996) 106–117.

Google Scholar

[11] J. K. Park, W. S. Lee, Y. J. Baik, K. W. Chae, The pronounced grain size refinement at the edge position of the diamond-coated WC–Co inserts under microwave plasma with negative bias, Diamond Relat. Mater. 12 (2003) 1657-1662.

DOI: 10.1016/s0925-9635(03)00266-8

Google Scholar

[12] H. G. Prengel, W. R. Pfouts, A. T. Santhanam, State of the art in hard coatings for carbide cutting tools, Surf. Coat. Technolo.102-3 (1998) 183–190.

DOI: 10.1016/s0257-8972(96)03061-7

Google Scholar

[13] K. Tonshoff, B. Karpuschewski, A. Mohlfeld, T. Leyendecker, G. Erkens, H. GFub, R. Wenke, Performance of oxygen-rich TiALON coatings in dry cutting applications, Surf. Coat. Technolo.108-109 (1998) 535–542.

DOI: 10.1016/s0257-8972(98)00637-9

Google Scholar

[14] S. G. Harris, A. C. Vlasveld, E. D. Doyle, P. J. Dolder, Dry machining — commercial viability through filtered arc vapour deposited coatings, Surf. Coat. Technolo. 133–134 (2000) 383–388.

DOI: 10.1016/s0257-8972(00)00895-1

Google Scholar

[15] A. Larsson, M. Halvarsson, S. Vuorinen, Microstructural investigation of as-deposited and heat-treated CVD Al2O3, Surf. Coat. Technolo.94-95 (1997) 76–81.

DOI: 10.1016/s0257-8972(97)00479-9

Google Scholar

[16] M. Kathrein, W. Schintlmeister, W. Wallgram, U. Schleinkofer, Doped CVD Al2O3 coatings for high performance cutting tools, Surf. Coat. Technolo.163–164 (2003) 181–188.

DOI: 10.1016/s0257-8972(02)00483-8

Google Scholar

[17] K. Bobzin, E. Lugscheider, M. Maes, C. Pinero, Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering, Thin Solid Films 494 (2006) 255–262.

DOI: 10.1016/j.tsf.2005.08.162

Google Scholar

[18] W. Xidong, W. Fuming, L. Wenchao, Synthesis, microstructures and properties of γ-aluminum oxynitride, Mater. Sci. Eng.: A 342 (2003) 245–250.

DOI: 10.1016/s0921-5093(02)00282-4

Google Scholar

[19] G. List, M. Nouari, D. Gehin, S. Gomez, J.P. Manaud, Y. Le Petitcorps, F. Girot, Wear behaviour of cemented carbide tools in dry machining of aluminium alloy, Wear 259 (2005) 1177-1189.

DOI: 10.1016/j.wear.2005.02.056

Google Scholar

[20] S.K. Pattnaik, N.K. Bhoi, S. Padhi, S. K. Sarangi, Dry machining of aluminum for proper selection of cutting tool: tool performance and tool wear, The Int. J. Adv. Manu. Technolo. 98 (2018) 55-68.

DOI: 10.1007/s00170-017-0307-0

Google Scholar

[21] T.R. Soren, R. Kumar, I. Panigrahi, A.K. Sahoo, A. Panda, R.K. Das, Machinability behavior of Aluminium Alloys: A Brief Study, Mater. Today: Proc. 18 (2019) 5069-5075.

DOI: 10.1016/j.matpr.2019.07.502

Google Scholar

[22] P. Bansal, L. Upadhyay, Experimental Investigations to Study Tool Wear During Turning of Alumina Reinforced Aluminium Composite, Procedia Eng. 51(2013) 818-827.

DOI: 10.1016/j.proeng.2013.01.117

Google Scholar

[23] C. Kalyan, and G.L. Samuel, Cutting mode analysis in high speed finish turning of AlMgSi alloy using edge chamfered PCD tools, J. Mater. Process. Technolo. 216 (2015) 46-159.

DOI: 10.1016/j.jmatprotec.2014.09.003

Google Scholar

[24] S. Ganopadhyay, R. Acharya, A.K. Chattopadhyay, V.G. Sargade, Effect of cutting speed and surface chemistry of cutting tools on the formation of BUL OR BUE and surface quality of the generated surface in dry turning of AA6005 aluminium alloy, Mach. Sci. Technolo. 14-2 (2010) 208-223.

DOI: 10.1080/10910344.2010.500961

Google Scholar

[25] K. Giasin, A. Hodzic, V. Phadnis, S. Ayvar-Soberanis, Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study, The Int. J. Adv. Manu. Technolo. 87 (2016) 2041–(2061).

DOI: 10.1007/s00170-016-8563-y

Google Scholar

[26] J. P. Davim, C. Maranhão, M. J. Jackson, G. Cabral, J. Grácio, FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools, The Int. J. Adv. Manu. Technolo. 39 (2008) 1093–1100.

DOI: 10.1007/s00170-007-1299-y

Google Scholar

[27] Z. Zhang, H. Dong, A State-of-the-art overview-Recent development in low friction and wear-resistant coatings and surfaces for high-temperature forming tools. Manu. Rev. 1 (2014) 24.

DOI: 10.1051/mfreview/2015001

Google Scholar

[28] S.N. Grigoriev, S.V. Fedorov, K. Hamdy, Materials, properties, manufacturing methods and cutting performance of innovative ceramic cutting tools-a review. Manu. Rev. 6 (2019) 19.

DOI: 10.1051/mfreview/2019016

Google Scholar