Al-Doped SnO2 as Transparent Heater: Influence of Deposition Time

Article Preview

Abstract:

The research on transparent heater (Thf) films rapidly increases due to their unique photoelectric properties, leading to new generation of optoelectronic device. Here, we report a simple method to fabricate transparent heater based on Al-doped SnO2 (ASO) thin films. ASO films with 5 wt% Al as dopant were synthesized with various deposition times, namely, 5, 10 and 15 minutes using ultrasonic spray pyrolysis method. The correlation of deposition time on their structural characteristic, optical, electrical and thermal properties has been investigated. X-ray diffraction studies found that all samples exhibit tetragonal structure with preferred orientation along (110) plane. Meanwhile, the UV-Vis transmittance indicated that the sample having good optical transparency in visible light spectrum with the average transmittance up to 89.7%. The sheet resistance of ASO thin films was found to decrease as the deposition time increases to 10 minutes. Furthermore, Al-doped SnO2 based transparent heater prepared with 10 minutes deposition time presents the excellent thermal temperature up to 76.3 °C at the applied voltage of 20 volt. The above findings reveal that Al-doped SnO2 can be used as an alternative compound to substitute higher cost indium tin oxide as transparent heater. Keywords: aluminium, composite, spray pyrolysis, SnO2, transparent heater

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1055)

Pages:

123-136

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. T. Papanastasiou et al., Transparent heaters: A review,, Adv. Funct. Mater., vol. 30, no. 2, (2020), p.1910225.

Google Scholar

[2] Z. Wang et al., Robust ultrathin and transparent AZO/Ag-SnOx/AZO on polyimide substrate for flexible thin film heater with temperature over 400oC,, J. Mater. Sci. Technol., vol. 48, (2020), p.156–162.

DOI: 10.1016/j.jmst.2020.01.058

Google Scholar

[3] M. Patel et al., Photovoltaic-driven transparent heater of ZnO-coated silver nanowire networks for self-functional remote power system,, J. Power Sources, vol. 491, (2021), p.229578.

DOI: 10.1016/j.jpowsour.2021.229578

Google Scholar

[4] D. S. Y. Jawathilake, J. S. Sagu, and K. G. U. Wijayantha, Transparent heater based on Al, Ga co-doped ZnO thin films,, Mater. Lett., vol. 237, (2019), p.249.

DOI: 10.1016/j.matlet.2018.11.092

Google Scholar

[5] J. Kang et al., High-performance graphene-based transparent flexible heaters,, Nano Lett., vol. 11, no. 12, (2011), p.5154–5158.

DOI: 10.1021/nl202311v

Google Scholar

[6] C. Hudaya, B. J. Jeon, and J. K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots,, ACS Appl. Mater. Interfaces, vol. 7, no. 1, (2015), p.57–61.

DOI: 10.1021/am507497u

Google Scholar

[7] S.-S. Li, Y.-L. Wang, B.-J. Li, L.-J. Huang, and N.-F. Ren, Copper/silver composite mesh transparent electrodes with low reflection for high-performance and low-voltage transparent heaters,, J. Alloys Compd., vol. 865, (2021), p.158877.

DOI: 10.1016/j.jallcom.2021.158877

Google Scholar

[8] R. Ramarajan, M. Kovendhan, K. Thangaraju, D. P. Joseph, and R. R. Babu, Facile deposition and characterization of large area highly conducting and transparent Sb-doped SnO2 thin film,, Appl. Surf. Sci., vol. 487, (2020), p.1385–1393.

DOI: 10.1016/j.apsusc.2019.05.079

Google Scholar

[9] H. Kaur, H. S. Bhatti, and K. Singh, Europium doping effect on 3D flower-like SnO2 nanostructures: Morphological changes, photocatalytic performance and fluorescence detection of heavy metal ion contamination in drinking water,, RSC Adv., vol. 9, no. 64, (2019), p.37450–37466.

DOI: 10.1039/c9ra03405f

Google Scholar

[10] L. Ran, D. Zhao, X. Gao, and L. Yin, Highly crystalline Ti-doped SnO2 hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes,, CrystEngComm, vol. 17, no. 22, (2015), p.4225–4237.

DOI: 10.1039/c5ce00184f

Google Scholar

[11] N. Yu et al., Dopant-dependent crystallization and photothermal effect of Sb-doped SnO2 nanoparticles as stable theranostic nanoagents for tumor ablation,, Nanoscale, vol. 10, no. 5, (2018), p.2542–2554.

DOI: 10.1039/c7nr08811f

Google Scholar

[12] R. Ramarajan, Thermal stability study of niobium doped SnO2 thin film for transparent conducting oxide application,, Superlattices Microstruct., vol. 135, (2019), p.106274.

DOI: 10.1016/j.spmi.2019.106274

Google Scholar

[13] L. T. C. Tuyen, S.-R. Jian, N. T. Tien, and P. H. Le, Nanomechanical and material properties of fluorine-doped tin oxide thin films prepared by ultrasonic spray pyrolysis: Effects of F-doping,, Materials (Basel)., vol. 12, no. 10, (2019), p.1665.

DOI: 10.3390/ma12101665

Google Scholar

[14] J. Yang, T. Meng, Z. Yang, C. Cui, and Q. Zhang, Investigation of tungsten doped tin oxide thin film transistors,, J. Phys. D. Appl. Phys., vol. 48, (2015), no. 43.

DOI: 10.1088/0022-3727/48/43/435108

Google Scholar

[15] V. Fauzia, M. N. Yusnidar, L. H. Lalasari, A. Subhan, and A. A. Umar, High figure of merit transparent conducting Sb-doped SnO2 thin films prepared via ultrasonic spray pyrolysis,, J. Alloys Compd., vol. 720, (2017), p.79–85.

DOI: 10.1016/j.jallcom.2017.05.243

Google Scholar

[16] S. N. Vidhya, O. N. Balasundaram, and M. Chandramohan, Structural and optical investigation of gallium doped tin oxide films prepared by spray pyrolysis,, J. Saudi Chem. Soc., vol. 20, no. 6, (2016), p.703–710.

DOI: 10.1016/j.jscs.2015.01.006

Google Scholar

[17] M. Fukumoto et al., High mobility approaching the intrinsic limit in Ta-doped SnO2 films epitaxially grown on TiO2 (001) substrates,, Sci. Rep., vol. 10, (2020), no. 6844.

DOI: 10.1038/s41598-020-63800-3

Google Scholar

[18] S. N. S. Lekshmy, V. S. N. Anitha, P. V Thomas, and K. Joy, Magnetic properties of Mn-doped SnO2 thin films prepared by the Sol-Gel dip coating method for dilute magnetic semiconductors,, J. Am. Ceram. Soc., vol. 97, no. 10, (2014), p.3184–3191.

DOI: 10.1111/jace.13084

Google Scholar

[19] G. K. Deyu et al., SnO2 films deposited by ultrasonic spray pyrolysis: Influence of Al incorporation on the properties,, Molecules, vol. 24, no. 15, (2019), p.2797.

DOI: 10.3390/molecules24152797

Google Scholar

[20] Y. Duan et al., Enhancing the performance of dye-sensitized solar cells: Doping SnO2 photoanodes with Al to simultaneously improve conduction band and electron lifetime,, J. Mater. Chem. A, vol. 3, no. 6, (2015), p.3066–3073.

DOI: 10.1039/c4ta05923a

Google Scholar

[21] Y. Duan et al., Al-doping to Synchronously Improve Conduction Band and Electron Lifetime for SnO2 Photoanode to Enhance Dye-Sensitized Solar Cells Performances,, J. Mater. Chem. A, vol. 3, no. 6, (2015), p.3066–3073.

DOI: 10.1039/c4ta05923a

Google Scholar

[22] M. Kormunda, D. Fischer, A. Hertwig, U. Beck, M. Sebik, and N. Esser, Preparation of pulsed DC magnetron deposited Fe-doped SnO 2 coatings,, Phys. status solidi, vol. 213, no. 9, (2016), p.2303–2309.

DOI: 10.1002/pssa.201532882

Google Scholar

[23] Effect of Al doping on structural, optical and electrical properties of SnO2 thin films synthesized by pulsed laser deposition,, Philos. Mag., vol. 94, no. 31, (2014), p.3507–3521.

DOI: 10.1080/14786435.2014.962641

Google Scholar

[24] T. Abendroth et al., Optical and thermal properties of transparent infrared blocking antimony doped tin oxide thin films,, Thin Solid Films, vol. 624, (2017), p.152–159.

DOI: 10.1016/j.tsf.2017.01.028

Google Scholar

[25] S.-H. Lee, J.-M. Choi, J.-H. Lim, J. Park, and J.-S. Park, A study on the thermoelectric properties of ALD-grown aluminum-doped tin oxide respect to nanostructure modulations,, Ceram. Int., vol. 44, no. 2, (2018), p.1978–(1983).

DOI: 10.1016/j.ceramint.2017.10.141

Google Scholar

[26] B. Tönbül, H. A. Can, T. Öztürk, and H. Akyıldız, Solution processed aluminum-doped ZnO thin films for transparent heater applications,, Mater. Sci. Semicond. Process., vol. 127, (2021), p.105735.

DOI: 10.1016/j.mssp.2021.105735

Google Scholar

[27] G. Korotcenkov and B. K. Cho, Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties,, Prog. Cryst. Growth Charact. Mater., vol. 63, no. 1, (2017) p.1–47.

DOI: 10.1016/j.pcrysgrow.2016.12.001

Google Scholar

[28] V. Fauzia, M. N. Yusnidar, L. Hanum, A. Subhan, and A. Ali, High fi gure of merit transparent conducting Sb-doped SnO 2 thin fi lms prepared via ultrasonic spray pyrolysis,, J. Alloy. Compd. 720, vol. 720, (2017), p.79–85.

DOI: 10.1016/j.jallcom.2017.05.243

Google Scholar

[29] S. Kumar et al., Tailoring the structural, electronic structure and optical properties of Fe: SnO2 nanoparticles,, J. Electron Spectros. Relat. Phenomena, vol. 240, no. 2 (2020).

Google Scholar

[30] D. H. Lim, S. W. Yang, and C. G. Lee, Regulation of electro-optical activities of nanostructured SnO2:Al powders by using a micro drop fluidized reactor,, Adv. Powder Technol., vol. 31, no. 9, (2020), p.3817–3823.

DOI: 10.1016/j.apt.2020.07.022

Google Scholar

[31] J. Zhang et al., Enhanced performance of an Al-doped SnO2 anode for the electrocatalytic oxidation of organic pollutants in water,, Mater. Today Commun., vol. 24, no. April, (2020), p.101164.

DOI: 10.1016/j.mtcomm.2020.101164

Google Scholar

[32] S. Gürakar and T. Serin, Comprehensive structural analysis and electrical properties of (Cu, Al and In)-doped SnO2 thin films,, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 251, (2019), p.114445.

DOI: 10.1016/j.mseb.2019.114445

Google Scholar

[33] H. K. Mallick, Y. Zhang, J. Pradhan, M. P. K. Sahoo, and A. K. Pattanaik, Influence of particle size and defects on the optical, magnetic and electronic properties of Al doped SnO2 nanoparticles,, J. Alloys Compd., vol. 854, (2021), p.156067.

DOI: 10.1016/j.jallcom.2020.156067

Google Scholar

[34] D. H. Kim, K. S. Cho, and H. K. Kim, Thermally evaporated indium-free, transparent, flexible SnO2/AgPdCu/SnO2 electrodes for flexible and transparent thin film heaters,, Sci. Rep., vol. 7, (2017), no. 1, p.1–15.

DOI: 10.1038/s41598-017-02711-2

Google Scholar

[35] J. Kaur, J. Shah, R. K. Kotnala, and K. C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO 2 nanoparticles,, Ceram. Int., vol. 38, no. 7, (2012), p.5563–5570.

DOI: 10.1016/j.ceramint.2012.03.075

Google Scholar

[36] V. Bonu, A. Das, A. K. Sivadasan, A. K. Tyagi, and S. Dhara, Invoking forbidden modes in SnO2 nanoparticles using tip enhanced Raman spectroscopy,, J. Raman Spectrosc., vol. 46, no. 11, (2015), p.1037–1040.

DOI: 10.1002/jrs.4747

Google Scholar

[37] S. H. Sun et al., Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders,, Chem. Phys. Lett., vol. 376, no. 1–2, (2003), p.103–107.

DOI: 10.1016/s0009-2614(03)00965-5

Google Scholar

[38] K. Ravichandran and K. Thirumurugan, Type Inversion and Certain Physical Properties of Spray Pyrolysed SnO2: Al Films for Novel Transparent Electronics Applications,, J. Mater. Sci. Technol., vol. 30, no. 2, (2014), p.97–102.

DOI: 10.1016/j.jmst.2013.09.019

Google Scholar

[39] R. Ramarajan, M. Kovendhan, K. Thangaraju, D. P. Joseph, and R. R. Babu, Facile deposition and characterization of large area highly conducting and transparent Sb-doped SnO2 thin film,, Appl. Surf. Sci., vol. 487, no. February, (2019), p.1385–1393.

DOI: 10.1016/j.apsusc.2019.05.079

Google Scholar

[40] X. Huang, M. Feng, and C. Gao, Study on electrical conductivity of transparent SnO2:Al thin films,, J. Mater. Sci. Mater. Electron., vol. 28, no. 16, (2017), p.12139–12146.

DOI: 10.1007/s10854-017-7028-x

Google Scholar

[41] C. Hudaya, B. J. Jeon, and J. K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots,, ACS Appl. Mater. Interfaces, vol. 7, no. 1, (2015), p.57–61.

DOI: 10.1021/am507497u

Google Scholar

[42] S. Yu, X. Liu, H. Dong, X. Wang, and L. Li, Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications,, Ceram. Int., vol. 47, no. 14, (2021), p.20379–20386.

DOI: 10.1016/j.ceramint.2021.04.046

Google Scholar

[43] B. You, B. K. Ju, and J. W. Kim, Photoresist-assisted fabrication of thermally and mechanically stable silver nanowire-based transparent heaters,, Sensors Actuators, A Phys., vol. 250, (2016), p.123–128.

DOI: 10.1016/j.sna.2016.09.021

Google Scholar

[44] X. Yu, X. Yu, J. Zhang, L. Chen, Y. Long, and D. Zhang, Optical properties of conductive silver-nanowire films with different nanowire lengths,, Nano Res., vol. 10, no. 11, (2017), p.3706–3714.

DOI: 10.1007/s12274-017-1583-6

Google Scholar

[45] J. Kang et al., High-performance graphene-based transparent flexible heaters,, Nano Lett., vol. 11, no. 12, (2011), p.5154–5158.

DOI: 10.1021/nl202311v

Google Scholar