[1]
D. T. Papanastasiou et al., Transparent heaters: A review,, Adv. Funct. Mater., vol. 30, no. 2, (2020), p.1910225.
Google Scholar
[2]
Z. Wang et al., Robust ultrathin and transparent AZO/Ag-SnOx/AZO on polyimide substrate for flexible thin film heater with temperature over 400oC,, J. Mater. Sci. Technol., vol. 48, (2020), p.156–162.
DOI: 10.1016/j.jmst.2020.01.058
Google Scholar
[3]
M. Patel et al., Photovoltaic-driven transparent heater of ZnO-coated silver nanowire networks for self-functional remote power system,, J. Power Sources, vol. 491, (2021), p.229578.
DOI: 10.1016/j.jpowsour.2021.229578
Google Scholar
[4]
D. S. Y. Jawathilake, J. S. Sagu, and K. G. U. Wijayantha, Transparent heater based on Al, Ga co-doped ZnO thin films,, Mater. Lett., vol. 237, (2019), p.249.
DOI: 10.1016/j.matlet.2018.11.092
Google Scholar
[5]
J. Kang et al., High-performance graphene-based transparent flexible heaters,, Nano Lett., vol. 11, no. 12, (2011), p.5154–5158.
DOI: 10.1021/nl202311v
Google Scholar
[6]
C. Hudaya, B. J. Jeon, and J. K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots,, ACS Appl. Mater. Interfaces, vol. 7, no. 1, (2015), p.57–61.
DOI: 10.1021/am507497u
Google Scholar
[7]
S.-S. Li, Y.-L. Wang, B.-J. Li, L.-J. Huang, and N.-F. Ren, Copper/silver composite mesh transparent electrodes with low reflection for high-performance and low-voltage transparent heaters,, J. Alloys Compd., vol. 865, (2021), p.158877.
DOI: 10.1016/j.jallcom.2021.158877
Google Scholar
[8]
R. Ramarajan, M. Kovendhan, K. Thangaraju, D. P. Joseph, and R. R. Babu, Facile deposition and characterization of large area highly conducting and transparent Sb-doped SnO2 thin film,, Appl. Surf. Sci., vol. 487, (2020), p.1385–1393.
DOI: 10.1016/j.apsusc.2019.05.079
Google Scholar
[9]
H. Kaur, H. S. Bhatti, and K. Singh, Europium doping effect on 3D flower-like SnO2 nanostructures: Morphological changes, photocatalytic performance and fluorescence detection of heavy metal ion contamination in drinking water,, RSC Adv., vol. 9, no. 64, (2019), p.37450–37466.
DOI: 10.1039/c9ra03405f
Google Scholar
[10]
L. Ran, D. Zhao, X. Gao, and L. Yin, Highly crystalline Ti-doped SnO2 hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes,, CrystEngComm, vol. 17, no. 22, (2015), p.4225–4237.
DOI: 10.1039/c5ce00184f
Google Scholar
[11]
N. Yu et al., Dopant-dependent crystallization and photothermal effect of Sb-doped SnO2 nanoparticles as stable theranostic nanoagents for tumor ablation,, Nanoscale, vol. 10, no. 5, (2018), p.2542–2554.
DOI: 10.1039/c7nr08811f
Google Scholar
[12]
R. Ramarajan, Thermal stability study of niobium doped SnO2 thin film for transparent conducting oxide application,, Superlattices Microstruct., vol. 135, (2019), p.106274.
DOI: 10.1016/j.spmi.2019.106274
Google Scholar
[13]
L. T. C. Tuyen, S.-R. Jian, N. T. Tien, and P. H. Le, Nanomechanical and material properties of fluorine-doped tin oxide thin films prepared by ultrasonic spray pyrolysis: Effects of F-doping,, Materials (Basel)., vol. 12, no. 10, (2019), p.1665.
DOI: 10.3390/ma12101665
Google Scholar
[14]
J. Yang, T. Meng, Z. Yang, C. Cui, and Q. Zhang, Investigation of tungsten doped tin oxide thin film transistors,, J. Phys. D. Appl. Phys., vol. 48, (2015), no. 43.
DOI: 10.1088/0022-3727/48/43/435108
Google Scholar
[15]
V. Fauzia, M. N. Yusnidar, L. H. Lalasari, A. Subhan, and A. A. Umar, High figure of merit transparent conducting Sb-doped SnO2 thin films prepared via ultrasonic spray pyrolysis,, J. Alloys Compd., vol. 720, (2017), p.79–85.
DOI: 10.1016/j.jallcom.2017.05.243
Google Scholar
[16]
S. N. Vidhya, O. N. Balasundaram, and M. Chandramohan, Structural and optical investigation of gallium doped tin oxide films prepared by spray pyrolysis,, J. Saudi Chem. Soc., vol. 20, no. 6, (2016), p.703–710.
DOI: 10.1016/j.jscs.2015.01.006
Google Scholar
[17]
M. Fukumoto et al., High mobility approaching the intrinsic limit in Ta-doped SnO2 films epitaxially grown on TiO2 (001) substrates,, Sci. Rep., vol. 10, (2020), no. 6844.
DOI: 10.1038/s41598-020-63800-3
Google Scholar
[18]
S. N. S. Lekshmy, V. S. N. Anitha, P. V Thomas, and K. Joy, Magnetic properties of Mn-doped SnO2 thin films prepared by the Sol-Gel dip coating method for dilute magnetic semiconductors,, J. Am. Ceram. Soc., vol. 97, no. 10, (2014), p.3184–3191.
DOI: 10.1111/jace.13084
Google Scholar
[19]
G. K. Deyu et al., SnO2 films deposited by ultrasonic spray pyrolysis: Influence of Al incorporation on the properties,, Molecules, vol. 24, no. 15, (2019), p.2797.
DOI: 10.3390/molecules24152797
Google Scholar
[20]
Y. Duan et al., Enhancing the performance of dye-sensitized solar cells: Doping SnO2 photoanodes with Al to simultaneously improve conduction band and electron lifetime,, J. Mater. Chem. A, vol. 3, no. 6, (2015), p.3066–3073.
DOI: 10.1039/c4ta05923a
Google Scholar
[21]
Y. Duan et al., Al-doping to Synchronously Improve Conduction Band and Electron Lifetime for SnO2 Photoanode to Enhance Dye-Sensitized Solar Cells Performances,, J. Mater. Chem. A, vol. 3, no. 6, (2015), p.3066–3073.
DOI: 10.1039/c4ta05923a
Google Scholar
[22]
M. Kormunda, D. Fischer, A. Hertwig, U. Beck, M. Sebik, and N. Esser, Preparation of pulsed DC magnetron deposited Fe-doped SnO 2 coatings,, Phys. status solidi, vol. 213, no. 9, (2016), p.2303–2309.
DOI: 10.1002/pssa.201532882
Google Scholar
[23]
Effect of Al doping on structural, optical and electrical properties of SnO2 thin films synthesized by pulsed laser deposition,, Philos. Mag., vol. 94, no. 31, (2014), p.3507–3521.
DOI: 10.1080/14786435.2014.962641
Google Scholar
[24]
T. Abendroth et al., Optical and thermal properties of transparent infrared blocking antimony doped tin oxide thin films,, Thin Solid Films, vol. 624, (2017), p.152–159.
DOI: 10.1016/j.tsf.2017.01.028
Google Scholar
[25]
S.-H. Lee, J.-M. Choi, J.-H. Lim, J. Park, and J.-S. Park, A study on the thermoelectric properties of ALD-grown aluminum-doped tin oxide respect to nanostructure modulations,, Ceram. Int., vol. 44, no. 2, (2018), p.1978–(1983).
DOI: 10.1016/j.ceramint.2017.10.141
Google Scholar
[26]
B. Tönbül, H. A. Can, T. Öztürk, and H. Akyıldız, Solution processed aluminum-doped ZnO thin films for transparent heater applications,, Mater. Sci. Semicond. Process., vol. 127, (2021), p.105735.
DOI: 10.1016/j.mssp.2021.105735
Google Scholar
[27]
G. Korotcenkov and B. K. Cho, Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties,, Prog. Cryst. Growth Charact. Mater., vol. 63, no. 1, (2017) p.1–47.
DOI: 10.1016/j.pcrysgrow.2016.12.001
Google Scholar
[28]
V. Fauzia, M. N. Yusnidar, L. Hanum, A. Subhan, and A. Ali, High fi gure of merit transparent conducting Sb-doped SnO 2 thin fi lms prepared via ultrasonic spray pyrolysis,, J. Alloy. Compd. 720, vol. 720, (2017), p.79–85.
DOI: 10.1016/j.jallcom.2017.05.243
Google Scholar
[29]
S. Kumar et al., Tailoring the structural, electronic structure and optical properties of Fe: SnO2 nanoparticles,, J. Electron Spectros. Relat. Phenomena, vol. 240, no. 2 (2020).
Google Scholar
[30]
D. H. Lim, S. W. Yang, and C. G. Lee, Regulation of electro-optical activities of nanostructured SnO2:Al powders by using a micro drop fluidized reactor,, Adv. Powder Technol., vol. 31, no. 9, (2020), p.3817–3823.
DOI: 10.1016/j.apt.2020.07.022
Google Scholar
[31]
J. Zhang et al., Enhanced performance of an Al-doped SnO2 anode for the electrocatalytic oxidation of organic pollutants in water,, Mater. Today Commun., vol. 24, no. April, (2020), p.101164.
DOI: 10.1016/j.mtcomm.2020.101164
Google Scholar
[32]
S. Gürakar and T. Serin, Comprehensive structural analysis and electrical properties of (Cu, Al and In)-doped SnO2 thin films,, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 251, (2019), p.114445.
DOI: 10.1016/j.mseb.2019.114445
Google Scholar
[33]
H. K. Mallick, Y. Zhang, J. Pradhan, M. P. K. Sahoo, and A. K. Pattanaik, Influence of particle size and defects on the optical, magnetic and electronic properties of Al doped SnO2 nanoparticles,, J. Alloys Compd., vol. 854, (2021), p.156067.
DOI: 10.1016/j.jallcom.2020.156067
Google Scholar
[34]
D. H. Kim, K. S. Cho, and H. K. Kim, Thermally evaporated indium-free, transparent, flexible SnO2/AgPdCu/SnO2 electrodes for flexible and transparent thin film heaters,, Sci. Rep., vol. 7, (2017), no. 1, p.1–15.
DOI: 10.1038/s41598-017-02711-2
Google Scholar
[35]
J. Kaur, J. Shah, R. K. Kotnala, and K. C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO 2 nanoparticles,, Ceram. Int., vol. 38, no. 7, (2012), p.5563–5570.
DOI: 10.1016/j.ceramint.2012.03.075
Google Scholar
[36]
V. Bonu, A. Das, A. K. Sivadasan, A. K. Tyagi, and S. Dhara, Invoking forbidden modes in SnO2 nanoparticles using tip enhanced Raman spectroscopy,, J. Raman Spectrosc., vol. 46, no. 11, (2015), p.1037–1040.
DOI: 10.1002/jrs.4747
Google Scholar
[37]
S. H. Sun et al., Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders,, Chem. Phys. Lett., vol. 376, no. 1–2, (2003), p.103–107.
DOI: 10.1016/s0009-2614(03)00965-5
Google Scholar
[38]
K. Ravichandran and K. Thirumurugan, Type Inversion and Certain Physical Properties of Spray Pyrolysed SnO2: Al Films for Novel Transparent Electronics Applications,, J. Mater. Sci. Technol., vol. 30, no. 2, (2014), p.97–102.
DOI: 10.1016/j.jmst.2013.09.019
Google Scholar
[39]
R. Ramarajan, M. Kovendhan, K. Thangaraju, D. P. Joseph, and R. R. Babu, Facile deposition and characterization of large area highly conducting and transparent Sb-doped SnO2 thin film,, Appl. Surf. Sci., vol. 487, no. February, (2019), p.1385–1393.
DOI: 10.1016/j.apsusc.2019.05.079
Google Scholar
[40]
X. Huang, M. Feng, and C. Gao, Study on electrical conductivity of transparent SnO2:Al thin films,, J. Mater. Sci. Mater. Electron., vol. 28, no. 16, (2017), p.12139–12146.
DOI: 10.1007/s10854-017-7028-x
Google Scholar
[41]
C. Hudaya, B. J. Jeon, and J. K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots,, ACS Appl. Mater. Interfaces, vol. 7, no. 1, (2015), p.57–61.
DOI: 10.1021/am507497u
Google Scholar
[42]
S. Yu, X. Liu, H. Dong, X. Wang, and L. Li, Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications,, Ceram. Int., vol. 47, no. 14, (2021), p.20379–20386.
DOI: 10.1016/j.ceramint.2021.04.046
Google Scholar
[43]
B. You, B. K. Ju, and J. W. Kim, Photoresist-assisted fabrication of thermally and mechanically stable silver nanowire-based transparent heaters,, Sensors Actuators, A Phys., vol. 250, (2016), p.123–128.
DOI: 10.1016/j.sna.2016.09.021
Google Scholar
[44]
X. Yu, X. Yu, J. Zhang, L. Chen, Y. Long, and D. Zhang, Optical properties of conductive silver-nanowire films with different nanowire lengths,, Nano Res., vol. 10, no. 11, (2017), p.3706–3714.
DOI: 10.1007/s12274-017-1583-6
Google Scholar
[45]
J. Kang et al., High-performance graphene-based transparent flexible heaters,, Nano Lett., vol. 11, no. 12, (2011), p.5154–5158.
DOI: 10.1021/nl202311v
Google Scholar