Toxicity Assessment of Colloidal Nanofertilizers Using Zebrafish Embryo Model through Acute Toxicity Assay

Article Preview

Abstract:

Chemical fertilizers are used in large quantities to boost the plant's development. Approximately 90 % of the fertilizer used is lost due to runoff and other processes, resulting in surface and groundwater contamination downstream. Nanofertilizers are believed to be more ecologically friendly and effective when used in small quantities. The use of nanomaterials in agriculture is not always successful. Nanoparticles may readily be discharged into water or the air, where they are ingested by living creatures, causing toxicity in humans, animals, and aquatic life. The aquatic environment has been contaminated with fertilizer runoff, which has been found to have fatal and sublethal impacts on aquatic species. In this work, the harmful effects of NPK-nanofertilizers were determined using the zebrafish embryo toxicity test (ZFET). To summarize, all nanofertilizers were dissolved in deionized water and diluted into concentration ranges in embryo medium. The toxicity of the fertilizer sample was next assessed on the early development of zebrafish embryos from 24 hours post-exposure (hpe) to 120 hpe. The survival rate, LC50, hatching rate, heart rate, and teratogenicity were all assessed. Toxicity of nanofertilizers T1, T2, and T3 to zebrafish embryos was moderate, with LC50 values of 45.7, 38.56, and 19.52 mM, respectively. While no teratogenic defect was seen in embryos treated with the respective samples from 0 hpe to 120 hpe, there was no teratogenic defect observed in the embryos treated with the respective samples from 0 hpe to 120 hpe. The larval heartbeat and hatching rate are unaffected by the nanofertilizer samples. As a result, the current study lays the groundwork for understanding the developmental toxicity of nanofertilizers in zebrafish embryos. Because little is known about the harmful effects of nanofertilizers on aquatic vertebrate species, this knowledge is essential for future research evaluating aquatic risk from nanofertilizers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1055)

Pages:

93-104

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Zulfiqar, M. Navarro, M. Ashraf, N.A. Akrame, S. Munné-Bosch, Nanofertilizer use for sustainable agriculture: Advantages and limitations, Plant Sci. 289 (2019).

DOI: 10.1016/j.plantsci.2019.110270

Google Scholar

[2] M.N. Khan, M. Mobin, A. Zahid, S. Alamri, Fertilizers and their contaminants in soils, surface and groundwater. In: Dominick A. DellaSala, and Michael I. Goldstein (Eds.), Encycl. Anthropocene., 2017, pp.225-240.

DOI: 10.1016/b978-0-12-809665-9.09888-8

Google Scholar

[3] C.O. Dimkpa, P.S. Bindraban, J. Fugice, S. Agyin-Birikorang, U. Singh, D. Hellums, Composite micronutrient nanoparticles and salts decrease drought stress in soybean, Agron. Sustain. Dev. 37 (2017) 1–13.

DOI: 10.1007/s13593-016-0412-8

Google Scholar

[4] E.W. Kaler, A.K. Murthy, B.E. Rodriguez, J.A.N. Zasadzinski, Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Sci. 245 (1989) 1371–1374.

DOI: 10.1126/science.2781283

Google Scholar

[5] J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc., Faraday Trans. 72 (1976) 1525–1568.

DOI: 10.1039/f29767201525

Google Scholar

[6] R.W. Jaggers, S.A.F. Bon, Structure and behaviour of vesicles in the presence of colloidal particles, Soft Matter. 14 (2018) 6949–6960.

DOI: 10.1039/c8sm01223g

Google Scholar

[7] S. Scholz, S. Fischer, U. Gündel, The zebrafish embryo model in environmental risk assessment - applications beyond acute toxicity testing, Environ. Sci. Pollut. Res. Int. 15 (2008) 394–404.

DOI: 10.1007/s11356-008-0018-z

Google Scholar

[8] C.E. Hicken, T.L. Linbo, D.H. Baldwin, M.L. Willis, M.S. Myers, L. Holland, … J.P. Incardona, Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish, Natl. acad. Sciences.108 (2011) 7086–7090.

DOI: 10.1073/pnas.1019031108

Google Scholar

[9] C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253–310.

DOI: 10.1002/aja.1002030302

Google Scholar

[10] G. Kari, U. Rodeck, A.P. Dicker, Zebrafish: An emerging model system for human disease and drug discovery, Clin. Pharmacol. Ther. 82 (2007) 70–80.

DOI: 10.1038/sj.clpt.6100223

Google Scholar

[11] W.A.A.Q.I. Wan-Mohtar, Z. Ilham, A.A. Jamaludin, N. Rowan, Use of Zebrafish Embryo Assay to Evaluate Toxicity and Safety of Bioreactor-Grown Exopolysaccharides and Endopolysaccharides from European Ganoderma applanatum Mycelium for Future Aquaculture Applications, Int. J. Mol. Sci. 22 (2021) 167.

DOI: 10.3390/ijms22041675

Google Scholar

[12] F. Sewell, J. Edwards, H. Prior, S. Robinson, Opportunities to apply the 3Rs in safety assessment programs, ILAR J. 57 (2016) 234–245.

DOI: 10.1093/ilar/ilw024

Google Scholar

[13] X.P. Gao, F. Feng, X.Q. Zhang, X.X. Liu, Y. Wang Bin, J.X. She, … M.F. He, Toxicity assessment of 7 anticancer compounds in zebrafish, Int. J. Toxicol. 33 (2014) 98–105.

DOI: 10.1177/1091581814523142

Google Scholar

[14] OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, (July), 2013, p.1–22.

DOI: 10.1787/9789264203709-en

Google Scholar

[15] F. I. Aksakal, T. Sisman, Developmental toxicity induced by Cu(OH)2 nanopesticide in zebrafish embryos. Environ. Toxicol. (2020) 1–10.

DOI: 10.1002/tox.22993

Google Scholar

[16] N. Choudhury, Ecotoxicology of aquatic system: a review on fungicide induced toxicity in fishes. Pro. Aqua. Farm. Marine. Biol. 1 (2018) 180001.

Google Scholar

[17] J. Kim, S. Kim, S. Lee, Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology. 5 (2011) 208–214.

DOI: 10.3109/17435390.2010.508137

Google Scholar

[18] J. Duan, Y. Yu, H. Shi, L. Tian, C. Guo, P. Huang, Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae, PLoS. ONE. 8 (2013) e74606.

DOI: 10.1371/journal.pone.0074606

Google Scholar

[19] M. Vaughan, R. Van Egmond, The use of the zebrafish (Danio rerio) embryo for the acute toxicity testing of surfactants, as a possible alternative to the acute fish test, Atla.-Altern. Lab. Anim. 38 (2010) 231–238.

DOI: 10.1177/026119291003800310

Google Scholar

[20] O. Bar-ilan, K.M. Louis, S.P. Yang, J.A. Pedersen, R.J. Hamers, R.E. Peterson, W. Heideman, Titanium dioxide nanoparticles produce phototoxicity in the developing zebra fish, Nanotoxicology. 6 (2012) 670–679.

DOI: 10.3109/17435390.2011.604438

Google Scholar

[21] M. Olasagasti, A.M. Gatti, F. Capitani, A. Barranco, M.A. Pardo, K. Escuredo, S. Rainieri, Toxic effects of colloidal nanosilver in zebrafish embryos, J. Appl. Toxicol. 34 (2014) 562–575.

DOI: 10.1002/jat.2975

Google Scholar

[22] J. S. Stine, B. J. Harper, C. G. Conner, O. D. elev, S. L. Harper, In Vivo Toxicity Assessment of Chitosan-Coated Lignin Nanoparticles in Embryonic Zebrafish (Danio rerio). Nanomaterials (Basel, Switzerland), 11 (2021) 111.

DOI: 10.3390/nano11010111

Google Scholar

[23] C.S. Martinez, D.E. Igartúa, M.N. Calienni, D.A. Feas, M. Siri, J. Montanari, … M.J. Prieto, Relation between biophysical properties of nanostructures and their toxicity on zebrafish, Biophys. Rev. 9 (2017) 775–791.

DOI: 10.1007/s12551-017-0294-2

Google Scholar

[24] J. Bakkers, Zebrafish as a model to study cardiac development and human cardiac disease, Cardiovasc. Res. 91 (2011) 279–288.

DOI: 10.1093/cvr/cvr098

Google Scholar

[25] K. Baker, K.S. Warren, G. Yellen, M.C. Fishman, Defective pacemaker, current (Ih) in a zebrafish mutant with a slow heart rate, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 4554–4559.

DOI: 10.1073/pnas.94.9.4554

Google Scholar

[26] G. Xia, T. Liu, Z. Wang, Y. Hou, L. Dong, … J. Qi, The effect of silver nanoparticles on zebrafish embryonic development and toxicology, Artif. Cells. Nanomed. Biotechnol. 44 (2016) 1116-1121.

Google Scholar

[27] M.V. Brundo, A. Salvaggio, Zebrafish or Danio rerio: A New Model in Nanotoxicology Study, Recent Advances in Zebrafish Researches, Yusuf Bozkurt, IntechOpen,.

DOI: 10.5772/intechopen.74834

Google Scholar

[28] I.V.F. Dos Santos, G.C. de Souza, G.R. Santana, J.L. Duarte, C.P Fernandes, H. Keia, J.A. Velazquez-Moyado, A. Navarrete, I.M. Ferreira, H.O. Carvalho, Histopathology in zebrafish (Danio rerio) to evaluate the toxicity of medicine: An anti-inflammatory phytomedicine with Janaguba milk (Himatanthus drasticus Plumel), Histopathol. Update. 39 (2018) 64.

DOI: 10.5772/intechopen.76670

Google Scholar

[29] F. Niyaghi, K.R. Haapala, S.L. Harper, M.C. Weismiller, Stability and biological responses of zinc oxide metalworking nanofluids (ZnO MWnFTM) using dynamic light scattering and zebrafish assays, Tribol. Trans. 57 (2014) 730–739.

DOI: 10.1080/10402004.2014.906695

Google Scholar

[30] M.V. Caballero, M. Candiracci, Zebrafish as a toxicological model for screening and recapitulate human diseases, J. Unexplored Med. Data. 3 (2018) 4.

DOI: 10.20517/2572-8180.2017.15

Google Scholar