[1]
Pan, C., et al., Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sensors and Actuators A: Physical, 2010. 159(1): pp.96-104.
DOI: 10.1016/j.sna.2010.02.023
Google Scholar
[2]
Wei, C. and X. Jing, A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 2017. 74: pp.1-18.
DOI: 10.1016/j.rser.2017.01.073
Google Scholar
[3]
Feng, G.-H. and J.-C. Hung, Development of wide frequency range-operated micromachined piezoelectric generators based on figure-of-merit analysis. Microsystem Technologies, 2008. 14(3): pp.419-425.
DOI: 10.1007/s00542-007-0538-3
Google Scholar
[4]
Burham, N., et al. Development of Piezoelectric Energy Harvesting via Vehicle Movements. in 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA). 2019. IEEE.
DOI: 10.1109/tssa48701.2019.8985469
Google Scholar
[5]
Dhakar, L., et al., A new energy harvester design for high power output at low frequencies. Sensors and Actuators A: Physical, 2013. 199: pp.344-352.
DOI: 10.1016/j.sna.2013.06.009
Google Scholar
[6]
Kim, S.-I., et al., Low frequency properties of micro power generator using a gold electroplated coil and magnet. Current Applied Physics, 2008. 8(2): pp.138-141.
DOI: 10.1016/j.cap.2007.06.005
Google Scholar
[7]
Giordano, C., et al., AlN on polysilicon piezoelectric cantilevers for sensors/actuators. Microelectronic Engineering, 2009. 86(4-6): pp.1204-1207.
DOI: 10.1016/j.mee.2008.12.075
Google Scholar
[8]
Saha, C., et al., Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators A: Physical, 2008. 147(1): pp.248-253.
DOI: 10.1016/j.sna.2008.03.008
Google Scholar
[9]
Cook-Chennault, K.A., N. Thambi, and A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart materials and structures, 2008. 17(4): p.043001.
DOI: 10.1088/0964-1726/17/4/043001
Google Scholar
[10]
Talib, N., et al., Comprehensive review on effective strategies and key factors for high performance piezoelectric energy harvester at low frequency. International Journal of Automotive and Mechanical Engineering, 2019. 16(4): pp.7181-7210.
DOI: 10.15282/ijame.16.4.2019.03.0537
Google Scholar
[11]
Safaei, M., H.A. Sodano, and S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Materials and Structures, 2019. 28(11): p.113001.
DOI: 10.1088/1361-665x/ab36e4
Google Scholar
[12]
Zaki, N.A.F., et al. Simulation of Zinc Oxide, Barium Sodium Niobate, and Barium Titanate as Lead-Free Piezoelectric Materials. in 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). (2021).
DOI: 10.1109/rsm52397.2021.9511615
Google Scholar
[13]
Chaudhuri, D., S. Kundu, and N. Chattoraj. Harvesting energy with zinc oxide bio-compatible piezoelectric material for powering cochlear implants. in 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). 2017. IEEE.
DOI: 10.1109/ipact.2017.8245043
Google Scholar
[14]
Guo, L., et al., Electroconductive textiles and textile-based electromechanical sensors—integration in as an approach for smart textiles, in Smart textiles and their applications. 2016, Elsevier. pp.657-693.
DOI: 10.1016/b978-0-08-100574-3.00028-x
Google Scholar
[15]
Cauda, V., et al., Nanoconfinement: an Effective Way to Enhance PVDF Piezoelectric Properties. ACS Applied Materials & Interfaces, 2013. 5(13): pp.6430-6437.
DOI: 10.1021/am4016878
Google Scholar
[16]
Lin, Y.-F., et al., Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008. 92(2): p.022105.
Google Scholar