Facile Fabrication of the Glass Substrate Coated Nitrogen-doped TiO2 Spheres/Polytetrafluoroethylene Based on Hydrophobic-Photocalatytic Self-Cleaning Properties

Article Preview

Abstract:

Nitrogen-doped TiO2 (N-TiO2)/polytetrafluoroethylene (PTFE) has been prepared by optimization of nitrogen and polytetrafluoroethylene. N-TiO2 has been modified by optimizing doping concentration in two-step process synthesis via solvothermal treatment, by mixing TiO2 and variation ammonium carbonate as a nitrogen source at 0.5 M, 1.0 M, 1.5 M. Synthesized materials denoted as N-TiO2, were characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared ( FTIR), Scanning Electron microscopy (SEM), and spectrophotometer UV Vis. Based on the XRD pattern, a shift diffraction pattern was assigned to [101] that indicated the nitrogen successfully doped. The functional group identified by FTIR shown an O-Ti-N bond seems to influence the energy gap of TiO2. The presence of nitrogen as an impurity in semiconductor TiO2 was decreased the amount of bandgap energy from 3.10 eV to 2.95 eV. Synthesized N-TiO2 is a nanosphere morphology. Glass substrate containing N-TiO2/PTFE has excellent self-cleaning in a ratio N-TiO2/PTFE (1:3) and based on optical properties, show that each coating on the glass substrate has high transmittance for composition N-TiO2/PTFE (1:3) > 90%. The contact angle before and after oleic acid contaminant under visible light are 97.68 and 94.16º, respectively. The discoloration of methylene blue (MB) coated on the glass performed under visible light shown 60.32% degradation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1055)

Pages:

53-62

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kamegawa, K. Irikawa, and H. Yamashita, Multifunctional surface designed by nanocomposite coating of polytetrafluoroethylene and TiO2 photocatalyst: Self-cleaning and superhydrophobicity,, Sci. Rep., vol. 7, no. 1, pp.1-2, 2017,.

DOI: 10.1038/s41598-017-14058-9

Google Scholar

[2] M.Q. Khan et al., Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites,, Nanomaterials, vol. 8, no. 9, 2018,.

DOI: 10.3390/nano8090644

Google Scholar

[3] A. Syafiq, A. K. Pandey, V. Balakrishnan, and N. A. Rahim, Study on self-cleaning performance and hydrophobicity of TiO2/silane coatings,, Pigment Resin Technol., vol. 2016, no. August, 2018,.

DOI: 10.1108/prt-02-2018-0010

Google Scholar

[4] C. Peng, Z. Chen, and M. K. Tiwari, All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance,, Nat. Mater., vol. 17, no. 4, p.355–360, 2018,.

DOI: 10.1038/s41563-018-0044-2

Google Scholar

[5] J. Zhou, Z. Tan, Z. Liu, M. Jing, W. Liu, and W. Fu, Preparation of transparent fluorocarbon/ TiO2-SiO2 composite coating with improved self-cleaning performance and anti-aging property,, Appl. Surf. Sci., vol. 396, p.161–168, 2017,.

DOI: 10.1016/j.apsusc.2016.11.014

Google Scholar

[6] L. Zou, A.D. Phule, Y. Sun, T.Y. Zhu, S. Wen, and Z.X. Zhang, Superhydrophobic and superoleophilic polyethylene aerogel coated natural rubber latex foam for oil-water separation application,, Polym. Test., vol. 85, no. January, p.106451, 2020,.

DOI: 10.1016/j.polymertesting.2020.106451

Google Scholar

[7] M.N. Ali, S.C. Goud, and A.S. Roy, A facile and large-area fabrication method of superhydrophobic self-cleaning polysiloxane/TiO2 nanocomposite films and its dielectric properties,, J. Mater. Sci. Mater. Electron., vol. 31, no. 15, p.12570–12578, 2020,.

DOI: 10.1007/s10854-020-03807-8

Google Scholar

[8] B. Xu, J. Ding, L. Feng, Y. Ding, F. Ge, and Z. Cai, Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2,, Surf. Coatings Technol., vol. 262, p.70–76, 2015,.

DOI: 10.1016/j.surfcoat.2014.12.017

Google Scholar

[9] J. C. Neves, N. D. S. Mohallem, and M. M. Viana, Polydimethylsiloxanes-modified TiO2 coatings: The role of structural, morphological and optical characteristics in a self-cleaning surface,, Ceram. Int., vol. 46, no. 8, p.11606–11616, 2020,.

DOI: 10.1016/j.ceramint.2020.01.190

Google Scholar

[10] J. G. Mahy et al., Highly efficient low-temperature N-doped TiO2 catalysts for visible light photocatalytic applications,, Materials (Basel)., vol. 11, no. 4, p.1–20, 2018,.

DOI: 10.3390/ma11040584

Google Scholar

[11] Y.J. Hwang, S. Yang, and H. Lee, Surface analysis of N-doped TiO2 nanorods and their enhanced photocatalytic oxidation activity,, Appl. Catal. B Environ., vol. 204, p.209–215, 2017,.

DOI: 10.1016/j.apcatb.2016.11.038

Google Scholar

[12] Z. Zhao, T. Kou, L. Zhang, S. Zhai, W. Wang, and Y. Wang, Dealloying induced N-doping in spindle-like porous rutile TiO2 for enhanced visible light photocatalytic activity,, Corros. Sci., vol. 137, no. March, p.204–211, 2018,.

DOI: 10.1016/j.corsci.2018.03.049

Google Scholar

[13] W. Zhao, S. Liu, S. Zhang, R. Wang, and K. Wang, Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasma-assisted sol-gel method,, Catal. Today, vol. 337, no. January, p.37–43, 2019,.

DOI: 10.1016/j.cattod.2019.04.024

Google Scholar

[14] Y. Yang, S. Liao, W. Shi, Y. Wu, R. Zhang, and S. Leng, Nitrogen-doped TiO2(B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries,, RSC Adv., vol. 7, no. 18, p.10885–10890, 2017,.

DOI: 10.1039/c7ra00469a

Google Scholar

[15] S. Sun, P. Gao, Y. Yang, P. Yang, Y. Chen, and Y. Wang, N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production,, ACS Appl. Mater. Interfaces, vol. 8, no. 28, p.18126–18131, 2016,.

DOI: 10.1021/acsami.6b05244

Google Scholar

[16] Y. Wang, Z. Huang, R. S. Gurney, and D. Liu, Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 561, no. September 2018, p.101–108, 2019,.

DOI: 10.1016/j.colsurfa.2018.10.054

Google Scholar

[17] Z. Y. Deng, W. Wang, L. H. Mao, C. F. Wang, and S. Chen, Versatile superhydrophobic and photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics,, J. Mater. Chem. A, vol. 2, no. 12, p.4178–4184, 2014,.

DOI: 10.1039/c3ta14942k

Google Scholar

[18] X. Ding, S. Pan, C. Lu, H. Guan, X. Yu, and Y. Tong, Hydrophobic photocatalytic composite coatings based on nano-TiO2 hydrosol and aminopropyl terminated polydimethylsiloxane prepared by a facile approach,, Mater. Lett., vol. 228, p.5–8, 2018,.

DOI: 10.1016/j.matlet.2018.05.103

Google Scholar

[19] A. B. Aritonang, Y. K. Krisnandi, and J. Gunlazuardi, Modification of TiO2 nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue,, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 1, p.234–241, 2018,.

DOI: 10.18517/ijaseit.8.1.2342

Google Scholar

[20] P. G. Smirniotis, T. Boningari, D. Damma, and S. N. R. Inturi, Single-step rapid aerosol synthesis of N-doped TiO2 for enhanced visible light photocatalytic activity,, Catal. Commun., vol. 113, no. February, p.1–5, 2018,.

DOI: 10.1016/j.catcom.2018.04.019

Google Scholar

[21] F. Wang, H. Zhang, H. Zhu, and Y. Guo, Ultra-hydrophobic modification of TiO2 nanoparticles via thermal decomposition of polytetrafluoroethylene,, Powder Technol., vol. 253, p.548–552, 2014,.

DOI: 10.1016/j.powtec.2013.12.010

Google Scholar

[22] Y. Zhou, M. Li, X. Zhong, Z. Zhu, P. Deng, and H. Liu, Hydrophobic composite coatings with photocatalytic self-cleaning properties by micro/nanoparticles mixed with fluorocarbon resin,, Ceram. Int., vol. 41, no. 4, p.5341–5347, 2015,.

DOI: 10.1016/j.ceramint.2014.12.090

Google Scholar

[23] F. Cheng, S. M. Sajedin, S. M. Kelly, A. F. Lee, and A. Kornherr, UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles,, Carbohydr. Polym., vol. 114, p.246–252, 2014,.

DOI: 10.1016/j.carbpol.2014.07.076

Google Scholar

[24] Y. Zhao, Y. Liu, Q. Xu, M. Barahman, and A. M. Lyons, Catalytic, self-cleaning surface with stable superhydrophobic properties: Printed polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles,, ACS Appl. Mater. Interfaces, vol. 7, no. 4, p.2632–2640, 2015,.

DOI: 10.1021/am5076315

Google Scholar

[25] Y. Liang et al., Super-hydrophobic self-cleaning bead-like SiO2 @PTFE nanofiber membranes for waterproof-breathable applications,, Appl. Surf. Sci., vol. 442, p.54–64, 2018,.

DOI: 10.1016/j.apsusc.2018.02.126

Google Scholar

[26] E. D. Toe, W. Kurniawan, E. G. Mariquit, and H. Hinode, Synthesis of N-doped mesoporous TiO2 by facile one-step solvothermal process for visible light photocatalytic degradation of organic pollutant,, J. Environ. Chem. Eng., vol. 6, no. 4, p.5125–5134, 2018,.

DOI: 10.1016/j.jece.2018.08.005

Google Scholar