Microstructure Evaluation of Photovoltaic Solar Panel’s Interconnection: A Review

Article Preview

Abstract:

This paper aims to review the methodologies used to conduct microstructure evaluation of the photovoltaic (PV) interconnection. This analysis is important to identify the microstructural properties of the interconnection for failure analysis purposes. The interconnection becomes a major concern towards the efficiency and reliability of PV technology. In this paper, the common techniques used for the interconnection technology such as soldering, conductive adhesive and ultrasonic were presented with the assessment method to identify the failure mode and failure mechanism at the bonding interface. The identification of the failure mode and failure mechanism through visual analysis and conformation of failure phenomenon was important to highlight the risks and develop the countermeasures. The evaluation of microstructure characterization techniques in the electronics and PV industry has been presented by identifying the outcomes of each technique with different reliability tests. The discoveries of failure analysis in the electronics industry were more matured and becomes the reference to the PV development. The outcomes from this review could be beneficial to improve the interconnection bond in the PV industry by eliminating or minimizing the failure through design modification at the earliest point in the development process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1055)

Pages:

27-35

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T. Zarmai, N. N. Ekere, C. F. Oduoza, E. H. Amalu, A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly, Appl. Energy, 154 (2015) 173–182.

DOI: 10.1016/j.apenergy.2015.04.120

Google Scholar

[2] K. Abdulmawjood, S. S. Refaat, W. G. Morsi, Detection and prediction of faults in photovoltaic arrays: A review, Proceedings 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering, (2018) 1–8.

DOI: 10.1109/cpe.2018.8372609

Google Scholar

[3] E. L. Meyer, E. E. Van Dyk, Assessing the reliability and degradation of photovoltaic moduleperformance parameters, IEEE Transactions on Reliability, 53(2004), 83–92.

DOI: 10.1109/tr.2004.824831

Google Scholar

[4] S. Kurtz, J. Granata, M. Quintana, Photovoltaic-reliability R & D toward a solar-powered world, Proc. SPIE 7412, Reliability of Photovoltaic Cells, Modules, Components, and Systems II, 7412 (2009).

DOI: 10.1117/12.825649

Google Scholar

[5] A. Renders, P. Verlinden, W. van Sark, A. Freuendlich, Photovoltaic Solar Energy, first ed., John Wiley & Sons, United Kingdom, (2017).

Google Scholar

[6] W. Bing Guo, T. Min Luan, X. Song Leng, J. Shan He, J. Chun Yan, Interfacial microstructure evolution and mechanical properties of Al/Sn joints by ultrasonic-assisted soldering, Trans. Nonferrous Met. Soc. China (English Edition), 27 (2017) 962–970.

DOI: 10.1016/s1003-6326(17)60112-2

Google Scholar

[7] I. Abdullah, M. N. Zulkifli, A. Jalar, R. Ismail, and M. A. Ambak, Relationship of mechanical and micromechanical properties with microstructural evolution of Sn-3.0Ag-0.5Cu (SAC305) solder wire under varied tensile strain rates and temperatures, J. Electron. Mater., 48 (2019) 2826–2839.

DOI: 10.1007/s11664-019-06985-2

Google Scholar

[8] R. al Adawiyah Ab Rahim, M. N. Zulkifli, A. Jalar, A. M. Afdzaluddin, K. S. Shyong, Effect of isothermal aging and copper substrate roughness on the SAC305 solder joint intermetallic layer growth of high temperature storage (HTS), Sains Malays., 49(2020) 3045–3054.

DOI: 10.17576/jsm-2020-4912-16

Google Scholar

[9] T. Geipel, M. Moeller, J. Walter, A. Kraft, U. Eitner, Intermetallic compounds in solar cell interconnections: Microstructure and growth kinetics, Sol. Energy Mater. Sol. Cells, 159 (2017) 370–388.

DOI: 10.1016/j.solmat.2016.08.039

Google Scholar

[10] M. S. Alam, K. M. R. Hassan, J. C. Suhling, P. Lall, Mechanical characterization and microstructural evolution of SAC and SAC+X lead free solders Subjected to high temperature aging, 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (2019) 319–328.

DOI: 10.1109/itherm.2019.8757300

Google Scholar

[11] A. Eslami Majd, N. N. Ekere, Crack initiation and growth in PV module interconnection, Solar Energy, 206 (2020) 499–507.

DOI: 10.1016/j.solener.2020.06.036

Google Scholar

[12] K. J. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, Y. W. Chen, Characterizations of Cu/Sn-Zn solder/Ag interfaces on photovoltaic ribbon for silicon solar cells, IEEE Journal of Photovoltaics, 5 (2015) 202–205.

DOI: 10.1109/jphotov.2014.2373822

Google Scholar

[13] N. H. Jabarullah, A. Surendar, M. Arun, A. F. Siddiqi, T. Krasnopevtseva, Microstructural Characterization and Unified Reliability Assessment of Aged Solder Joints in a PV Module, IEEE Transactions on Components, Packaging and Manufacturing Technology, 10 (2020) 1028–1034.

DOI: 10.1109/tcpmt.2020.2972027

Google Scholar

[14] M. Heimann, R. Bakowskie, M. Köhler, J. Hirsch, M. Junghänel, A. Hussack, S. Sachert, Investigations of different soldering failure modes and their impact on module reliability, Energy Procedia, 55 (2014) 456–463.

DOI: 10.1016/j.egypro.2014.08.009

Google Scholar

[15] Y. C. Lin, J. Zhong, A review of the influencing factors on anisotropic conductive adhesives joining technology in electrical applications, J. Mater. Sci., 43 (2008) 3072–3093.

DOI: 10.1007/s10853-007-2320-4

Google Scholar

[16] S. Hoffmann, T. Geipel, M. Meinert, A. Kraft, Analysis of Peel and Shear Forces After Temperature Cycle Tests for Electrical Conductive Adhesives, 33rd European PV Solar Energy Conference and Exhibition, (2017).

Google Scholar

[17] A. de Rose, T. Geipel, D. Eberlein, A. Kraft, M. Nowottnick, Interconnection of silicon heterojunction solar cells by infrared soldering - solder joint analysis and temperature study, 36th European PV Solar Energy Conference and Exhibition, (2019) 9–13.

DOI: 10.1063/1.5125880

Google Scholar

[18] H. J. Song, H. S. Yoon, Y. Ju, S. M. Kim, W. G. Shin, J. Lim, S. Ko, H. M. Hwang, G. H. Kang, Conductive paste assisted interconnection for environmentally benign lead-free ribbons in c-Si PV modules, Solar Energy, 184 (2019) 273–280.

DOI: 10.1016/j.solener.2019.04.011

Google Scholar

[19] T. Xu, O. Valentin, C. Luechinger, Reliable metallic tape connection on CIGS solar cells by ultrasonic bonding, Thin Film Solar Technology II, 7771 (2010).

DOI: 10.1117/12.860962

Google Scholar

[20] C. Iwamoto, K. Yamauchi, K. Motomura, Y. Hashimoto, K. Hamada, Microstructure of joint between stranded wire and substrate welded by ultrasonic welding, Appl. Sci., 9 (2019) 534.

DOI: 10.3390/app9030534

Google Scholar

[21] C. Iwamoto, S. Satonaka, A. Yoshida, T. Nishinaka, K. Yamada, High Resolution Transmission Electron Microscopy of Aluminum/Mo-Coated Glass Substrate Interface Bonded by Ultrasonic Wire Welding, J. Solid Mech. Mater. Eng., 5 (2011) 803–809.

DOI: 10.1299/jmmp.5.803

Google Scholar

[22] E. Arjmand, P. A. Agyakwa, M. R. Corfield, J. Li, B. Mouawad, C. Mark Johnson, A thermal cycling reliability study of ultrasonically bonded copper wires, Microelectron. Reliab., 59 (2016), 126–133.

DOI: 10.1016/j.microrel.2016.01.009

Google Scholar

[23] G. Khatibi, B. Weiss, J. Bernardi, S. Schwarz, Microstructural investigation of interfacial features in Al wire bonds, J. Electron. Mater., 41 (2012), 3436–3446.

DOI: 10.1007/s11664-012-2215-2

Google Scholar

[24] J. Due, A. J. Robinson, Reliability of thermal interface materials: A review, Appl. Therm. Eng., 50 (2013) 455–463.

Google Scholar

[25] E. Arjmand, P. A. Agyakwa, and C. M. Johnson, "Reliability of thick Al wire: A study of the effects of wire bonding parameters on thermal cycling degradation rate using non-destructive methods, Microelectron. Reliab., 54 (2014) 2006–(2012).

DOI: 10.1016/j.microrel.2014.07.119

Google Scholar

[26] T. Geipel, V. Nikitina, L. P. Bauermann, E. Fokuhl , E. Schnabel, D. Erath, A. Krieg, A. Kraft, T. Fischer, R. Lorenz, D. Breitenbücher, Industrialization of Ribbon Interconnection for Silicon Heterojunction Solar Cells with Electrically Conductive Adhesives, 36th European PV Solar Energy Conference and Exhibition, (2019) 9-13.

DOI: 10.1016/j.egypro.2017.09.266

Google Scholar

[27] T. Geipel, M. Moeller, A. Kraft, U. Eitner, A Comprehensive Study of Intermetallic Compounds in Solar Cell Interconnections and their Growth Kinetics, Energy Procedia, 98 (2016) 86–97.

DOI: 10.1016/j.egypro.2016.10.084

Google Scholar

[28] R. Wirth, Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale," Chem. Geol., 261 (2009) 217–229.

DOI: 10.1016/j.chemgeo.2008.05.019

Google Scholar