Simulation of Heat Transfer Response on Single Leg Themoelectric Materials Behaviour

Article Preview

Abstract:

Heat transfer simulation in Bi2Te3, Ca2FeMoO6, and SrTiO3 solid module single-leg had been investigated using COMSOL Multiphysics package. The software COMSOL Multiphysics was used to investigate the temperature distribution, electrical potential distribution, power output, and current vs temperature throughout the length of the sample for Bi2Te3, Ca2FeMoO6, and SrTiO3 which one of these three materials was showing potential as TE materials. The simulation showed that the perovskite material Ca2FeMoO6 and SrTiO3 had shown a net temperature difference across lengths of +191.943°C and +7.54°C while Bi2Te3 showed a net temperature difference of -60°C. Next, in electrical potential distribution across the length, Ca2FeMoO6 and SrTiO3 produced a higher voltage of 170mV and 160mV, while Bi2Te3 produced 49mV. The values of the power output for the three materials were calculated with 0.7A input current. It was found that Ca2FeMoO6, SrTiO3, and Bi2Te3 generated 119mW, 113mW, and 34mW in the simulation. The simulation results revealed that the Bi2Te3 is a p-type thermoelectric element and has the potential use in cooling due to Peltier cooling effect. However, Ca2FeMoO6 and SrTiO3 are n-type thermoelectric elements with a heating effect. The simulation and investigation of TE material using COMSOL Multiphysics showed more potentials and helped to explore, predicted and evaluated the conditions for other new TE materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1055)

Pages:

69-75

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Rep. 6 (2020) 264-287.

DOI: 10.1016/j.egyr.2019.12.011

Google Scholar

[2] T. M. Tritt, Measurement and characterization techniques for thermoelectric materials, Mat. Res. Soc. Symp. Proc. 478 (1997).

Google Scholar

[3] P.J. Patil, A.M. Patil, Review on thermoelectric devices, Int. J. Emerg. Technol. Adv. Eng. 3 (2013) 681-688.

Google Scholar

[4] J. Martin, Computational Seebeck coefficient measurement simulations, J. Res. Natl. Inst. Stand. Technol. 117 (2012) 168.

DOI: 10.6028/jres.117.009

Google Scholar

[5] D. Champier, Thermoelectric generators: A review of applications, J. Energy Convers. Manag. 140 (2017) 167-181.

Google Scholar

[6] T. Maekawa, K. Kurosaki, H. Muta, M. Uno, S. Yamanaka, Thermoelectric properties of perovskite type strontium ruthenium oxide, J. Alloys Compd. 387 (2005) 56-59.

DOI: 10.1016/j.jallcom.2004.06.053

Google Scholar

[7] S. Hébert, D. Flahaut, C. Martin, S. Lemonnier, J. Naudem, C. Goupil, A. Maignan, J. Hejtmanek, Thermoelectric properties of perovskites: Sign change of the Seebeck coefficient and high temperature properties, Prog. Solid. State Ch. 35 (2007) 457-467.

DOI: 10.1016/j.progsolidstchem.2007.01.027

Google Scholar

[8] M. A. Ramírez, E. E. Castillo, Thermoelectric simulation using COMSOL Multiphysics and analysis of contact resistances effects (2015).

Google Scholar

[9] S. Krishna, M. Muralikrishna, R. Gowrishankar, Understanding Thermoelectric behavior of material using COMSOL, J. Appl. Phys. 9 (2017) 79-89.

Google Scholar

[10] X. Wang, H. Wang, W. Su, J. Zhai, T. Wang, T. Chen, F. Mehmood, C. Wang, Optimization of the performance of the SnTe uni-leg thermoelectric module via metallized layers, J. Renew. Energy. 131 (2019) 606-616.

DOI: 10.1016/j.renene.2018.07.067

Google Scholar

[11] H. He, Y. Wu, W. Liu, M. Rong, Z. Fang, X. Tang, Comprehensive modeling for geometric optimization of a thermoelectric generator module, J. Energy Convers. Manag. 183 (2019) 645-659.

DOI: 10.1016/j.enconman.2018.12.087

Google Scholar

[12] T. Wu, P. Gao, Development of perovskite-type materials for thermoelectric application, J. Mater. 11(2018) 999.

Google Scholar

[13] M.C. Robbins, Development of thermoelectric devices: design, fabrication and characterisation, Cardiff University. (2015).

Google Scholar

[14] S. Telang, Optimization of MEMS based waste heat recovery thermoelectric generator by modification of design and material use, J. Power Energy Envir. & Intel. Cont. (2018) 126-131.

DOI: 10.1109/peeic.2018.8665649

Google Scholar

[15] S. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter, Neutron diffraction studies and the magnetism of an ordered perovskite: Ba2CoTeO6, Dalton Trans. 39 (2010) 5490-5499.

DOI: 10.1039/b927498g

Google Scholar

[16] S. Renge, Y. Barhaiya, S. Pant, S. Sharma, A review on generation of electricity using Peltier module, J. Eng. Res. Technol. 6 (2017) 453-457.

DOI: 10.17577/ijertv6is010308

Google Scholar

[17] M. Jaegle, Simulating thermoelectric effects with finite element analysis using COMSOL,, Proc. ECT. 222 (2007).

Google Scholar

[18] S. Yushanov, L. Gritter, J. Crompton, K. Koppenhoefer, Multiphysics analysis of thermoelectric phenomena, J. Model. Simul. (2011) 1-11.

Google Scholar

[19] K. Teffah, Y. Zhang, X. L. Mou, Modeling and experimentation of new thermoelectric cooler–thermoelectric generator module, J. Energies. 11 (2018) 576.

DOI: 10.3390/en11030576

Google Scholar

[20] D. Ebling, M. Jaegle, M. Bartel, A. Jacquot, H. Böttner, Multiphysics simulation of thermoelectric systems for comparison with experimental device performance, J. Electron. Mater. 38 (2009) 1456-1461.

DOI: 10.1007/s11664-009-0825-0

Google Scholar

[21] H. Jouhara, Thermoelectric generator (TEG) technologies and applications, Int. J. Thermofluid. (2021) 100063.

Google Scholar

[22] S. Kumar, A. Gupta, G. Yadav, H. P. Singh, Peltier module for refrigeration and heating using embedded system, Recent Dev. Control Autom. Power Eng. RDCAPE (2015) 314-319.

DOI: 10.1109/rdcape.2015.7281416

Google Scholar