[1]
A. Ajiz, Gunawarman, and J. Affi, The effects of short-time solution treatment and short-time aging on mechanical properties of Ti-6Al-4V for orthopaedic applications,, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 5, no. 4, p.329–334, 2015,.
DOI: 10.18517/ijaseit.5.4.556
Google Scholar
[2]
M. Niinomi, D. Eylon, S. Fujishiro, and C. Ouchi, Effect of b Phase Stability at Room Temperature on Mechanical Properties in b -Rich a ؉ b Type Ti – 4 . 5Al – 3V – 2Mo – 2Fe Alloy,, vol. 42, no. 2, p.191–199, (2002).
DOI: 10.2355/isijinternational.42.191
Google Scholar
[3]
M. Niinomi, Biologically and Mechanically Biocompatible Titanium Alloys Ti-6Al-4V ELI,, vol. 49, no. 10, p.2170–2178, 2008,.
DOI: 10.2320/matertrans.l-mra2008828
Google Scholar
[4]
M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods,, Sci. Technol. Adv. Mater., vol. 4, no. 5, p.445–454, 2003,.
Google Scholar
[5]
Y. Xu, Y. Lu, J. Liang, and R. D. Sisson, Microstructure and corrosion behaviour of additively manufactured Ti–6Al–4V with various post-heat treatments,, Mater. Sci. Technol. (United Kingdom), vol. 35, no. 1, p.89–97, 2019,.
DOI: 10.1080/02670836.2018.1542052
Google Scholar
[6]
M. Abdel-Hady Gepreel and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation,, J. Mech. Behav. Biomed. Mater., vol. 20, p.407–415, 2013,.
DOI: 10.1016/j.jmbbm.2012.11.014
Google Scholar
[7]
M. Özcan and C. Hämmerle, Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls,, Materials (Basel)., vol. 5, no. 9, p.1528–1545, 2012,.
DOI: 10.3390/ma5091528
Google Scholar
[8]
J. Yang, H. Yang, H. Yu, Z. Wang, and X. Zeng, Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 48, no. 7, p.3583–3593, 2017,.
DOI: 10.1007/s11661-017-4087-9
Google Scholar
[9]
B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution,, Corros. Sci., vol. 137, no. August 2017, p.176–183, 2018,.
DOI: 10.1016/j.corsci.2018.03.047
Google Scholar
[10]
M. Sarraf et al., In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays,, J. Aust. Ceram. Soc., vol. 55, no. 1, p.187–200, 2019,.
DOI: 10.1007/s41779-018-0224-1
Google Scholar
[11]
J. Lu, W. Zhang, W. Huo, Y. Zhao, W. Cui, and Y. Zhang, Electrochemical corrosion behavior and mechanical properties of nanocrystalline Ti-6Al-4V Alloy induced by sliding friction treatment,, Materials (Basel)., vol. 12, no. 5, 2019,.
DOI: 10.3390/ma12050760
Google Scholar
[12]
S. Carquigny, J. Takadoum, and S. Ivanescu, Corrosion and tribocorrosion study of 316L steel, Ti–6Al–4V and Ti–10Zr–10Nb–5Ta,, Tribol. - Mater. Surfaces Interfaces, vol. 13, no. 2, p.112–119, 2019,.
DOI: 10.1080/17515831.2019.1596625
Google Scholar
[13]
L. O. Berbel, E. D. P. Banczek, I. K. Karoussis, G. A. Kotsakis, and I. Costa, Correction: Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an in Vitro model of peri-implant inflammation (PLoS ONE (2019)14:1(e0210530) Doi:10.1371/journal.pone.0210530),, PLoS One, vol. 14, no. 5, p.1–17, 2019,.
DOI: 10.1371/journal.pone.0217671
Google Scholar
[14]
Q. Zhang, B. Duan, Z. Zhang, J. Wang, and C. Si, Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti-6Al-4V alloy,, J. Mater. Res. Technol., vol. 11, p.1090–1099, 2021,.
DOI: 10.1016/j.jmrt.2021.01.091
Google Scholar
[15]
S. Kumar, V. Pandey, K. Chattopadhyay, and V. Singh, Surface Nanocrystallization Induced by Ultrasonic Shot Peening and Its Effect on Corrosion Resistance of Ti–6Al–4V Alloy,, Trans. Indian Inst. Met., vol. 72, no. 3, p.789–792, 2019,.
DOI: 10.1007/s12666-018-1531-5
Google Scholar
[16]
J. Fojt et al., Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing,, Mater. Sci. Eng. C, vol. 93, no. January, p.911–920, 2018,.
DOI: 10.1016/j.msec.2018.08.066
Google Scholar
[17]
Y. Xu, J. Wang, X. Zhang, P. Wang, J. Shi, and F. Huo, Corrosion behaviour of Ti-6Al-4V alloy as dental implant containing fluoride ions,, Int. J. Electrochem. Sci., vol. 12, no. 11, p.10308–10316, 2017,.
DOI: 10.20964/2017.11.04
Google Scholar
[18]
A. C. Hee et al., Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition,, Thin Solid Films, vol. 636, p.54–62, 2017,.
DOI: 10.1016/j.tsf.2017.05.030
Google Scholar
[19]
O. Heintz, V. Vignal, H. Krawiec, and J. Loch, Passivity and corrosion behaviour of Ti-10Mo-4Zr and Ti-6Al-4V alloys after long-term ageing in Ringer's solution at 37 °C,, J. Solid State Electrochem., vol. 21, no. 5, p.1445–1455, 2017,.
DOI: 10.1007/s10008-017-3506-6
Google Scholar
[20]
S. Gnanavel, S. Ponnusamy, L. Mohan, and C. Muthamizhchelvan, In Vitro Corrosion Behaviour of Ti–6Al–4V and 316L Stainless Steel Alloys for Biomedical Implant Applications,, J. Bio- Tribo-Corrosion, vol. 4, no. 1, p.4–11, 2018,.
DOI: 10.1007/s40735-017-0118-8
Google Scholar
[21]
S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy,, Electrochim. Acta, vol. 52, no. 3, p.839–846, 2006,.
DOI: 10.1016/j.electacta.2006.06.018
Google Scholar
[22]
S. Anderson, Annisa, J. Affi, Y. Yetri, and G. Gunawarman, The Effect of Aging Treatment on Mechanical Properties and Microstructures of Ti-12Cr in Ortodontic Applications,, IOP Conf. Ser. Mater. Sci. Eng., vol. 846, no. 1, 2020,.
DOI: 10.1088/1757-899x/846/1/012066
Google Scholar
[23]
M. Motyka and J. Sieniawski, The influence of initial plastic deformation on microstructure and hot plasticity of α+β titanium alloys,, Arch. Mater. Sci. Eng., vol. 41, no. 2, p.95–103, (2010).
Google Scholar
[24]
T. Akahori, M. Niinomi, H. Fukui, and A. Suzuki, Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thermo-mechanical treatments,, Mater. Trans., vol. 45, no. 5, p.1540–1548, 2004,.
DOI: 10.2320/matertrans.45.1540
Google Scholar
[25]
P. A. Machfudzoh, M. N. Amin, L. Sandra, and D. Putri, Efektivitas Ekstrak Daun Belimbing Wuluh sebagai Bahan Inhibitor Korosi pada Kawat Ortodonsi Berbahan Dasar Nikel-Titanium ( Effectiveness of Bilimbi Leaves Extract as Corrosion Inhibitor on Nickel-Titanium Orthodontic Wire ),, Artik. Ilm. Has. Penelit. Mhs., no. kelompok 3, p.1–6, (2014).
DOI: 10.20473/cdj.v6i2.2016.82-86
Google Scholar
[26]
M. F. Sfondrini et al., Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets,, Angle Orthod., vol. 79, no. 2, p.361–367, 2008,.
DOI: 10.2319/042108-223.1
Google Scholar
[27]
T. Hanawa, Metal ion release from metal implants,, Mater. Sci. Eng. C, vol. 24, no. 6-8 SPEC. ISS., p.745–752, 2004,.
Google Scholar
[28]
T. Albrektsson et al., The interface zone of inorganic implants In vivo: Titanium implants in bone,, Ann. Biomed. Eng., vol. 11, no. 1, p.1–27, 1983,.
DOI: 10.1007/bf02363944
Google Scholar
[29]
H. G. French, S. D. Cook, and R. J. Haddad, Correlation of tissue reaction to corrosion in osteosynthetic devices,, J. Biomed. Mater. Res., vol. 18, no. 7, p.817–828, 1984,.
DOI: 10.1002/jbm.820180712
Google Scholar
[30]
M. Fellah, M. Labaiz, O. Assala, L. Dekhil, and A. Iost, Tribological behavior of biomaterials for total hip prosthesis,, Trends Biomater. Artif. Organs, vol. 29, no. 1, p.22–30, (2015).
DOI: 10.1051/mattech/2014027
Google Scholar
[31]
H. Fajri, J. Affi, M. Niinomi, and H. Nur, CORROSION BEHAVIO UR OF TITANIUM β TYPE Ti -12Cr in 3 % NaCl SOLUTION.,.
DOI: 10.18517/ijaseit.9.5.9380
Google Scholar
[32]
S. Ardhy and J. Affi, PERILAKU KOROSI TITANIUM DALAM LARUTAN MODIFIKASI SALIVA,, vol. 6, no. 2, p.585–593, (2015).
Google Scholar
[33]
M. Niinomi et al., Development of Low Rigidity β -type Titanium Alloy for Biomedical Applications,, vol. 43, no. 12, p.2970–2977, (2002).
DOI: 10.2320/matertrans.43.2970
Google Scholar
[34]
and E. W. C. (1994) Boyer, R., G. Welsch, Materials Properties Handbook: Titanium Alloys. ASM International, 65–74.
Google Scholar
[35]
S. Anderson, A. Satria, P. Amin, J. Affi, and Y. Yetri, Corrosion Characteristics Of Titanium TNTZ And Ti-6Al-4V ELI In Artificial Saliva Solution At Human Body Temperature,, no. 04, p.240–245, (2021).
Google Scholar
[36]
A. Choubey, B. Basu, and R. Balasubramaniam, Electrochemical behavior of intermetallic Ti3Al-based alloys in simulated human body fluid environment,, Intermetallics, vol. 12, no. 6, p.679–682, 2004,.
DOI: 10.1016/j.intermet.2004.03.012
Google Scholar
[37]
S. Gokul Lakshmi, V. Raman, N. Rajendran, M. A. K. Babi, and D. Arivuoli, In vitro corrosion behaviour of plasma nitrided Ti-6Al-7Nb orthopaedic alloy in Hanks solution,, Sci. Technol. Adv. Mater., vol. 4, no. 5, p.415–418, 2003,.
DOI: 10.1016/j.stam.2003.09.005
Google Scholar
[38]
T. Trnava, S. Republic, and B. Polytechnic, The influence of heat treatment on the microstructure of the casted ti6al4v titanium alloy,, Mater. World, vol. 2, p.1–6, (2007).
Google Scholar
[39]
M. Engineers and S. A. Scientific, CORROSION STUDY OF METALLIC BIOMATERIALS IN,, (2011).
Google Scholar
[40]
V. Raman, S. Nagarajan, and N. Rajendran, Electrochemical impedance spectroscopic characterisation of passive film formed over β Ti-29Nb-13Ta-4.6Zr alloy,, Electrochem. commun., vol. 8, no. 8, p.1309–1314, 2006,.
DOI: 10.1016/j.elecom.2006.06.004
Google Scholar
[41]
G. Gunawarman, Konsep dan Teori Metalurgi Fisik. Yogyakarta (ID): Andi Offset. (2013).
Google Scholar
[42]
R. K. Gupta, V. A. Kumar, C. Mathew, and G. S. Rao, Strain hardening of Titanium alloy Ti6Al4V sheets with prior heat treatment and cold working,, Mater. Sci. Eng. A, vol. 662, p.537–550, 2016,.
DOI: 10.1016/j.msea.2016.03.094
Google Scholar