Improvement of the Corrosion Resistance and Potential for Metal Ion Release of Titanium Alloy Ti-6Al-4V ELI in Hanks Balanced Salt Solution (HBSS) after Thermomechanical

Article Preview

Abstract:

Ti-6Al-4V ELI is one of the titanium alloys commonly used as an implant material for its good biocompatibility. However, it has problems related to its corrosion behavior, especially when it is used for a long time. This study aimed to analyze the corrosion behavior of the implant material Ti-6Al-4V ELI in Hanks’ Balanced Salt Solution (HBSS) for a certain period, using the weight loss method in HBSS as the corrosive medium at 37°C. The immersion time was varied from two, four, until six weeks. Before immersion, the sample was thermomechanically treated with a combination of solution heat treatment at a temperature of 950°C and a holding time of 1 hour, water quenching, plastic deformation with deformation variations of 10%, 15%, and 20%, and, finally, aging heat treatment at a temperature of 550°C and holding time for 1.5 hours. The study results show that thermomechanical treatment and increased plastic deformation could reduce the corrosion rate and the metal ions released into the solution. These findings were evidenced by the corrosion rates of the pre-thermomechanical and the thermomechanical Ti-6Al-4V ELI with deformations of 10%, 15%, and 20% at the 6-week immersion of 6.57 x 10-6 mmpy, 4.27 x 10-6 mmpy, 3.89 x 10-6 mmpy, and 2.76 x 10-6 mmpy, respectively, and the metal ions released of 7.3 μg/L, 7 μg/L, 6.3 μg/L, and 6 μg/L, respectively. The corrosion rate of Ti-6Al-4V ELI under thermomechanical treatment, namely 2.76 x 10-6 mmpy, was the lowest compared to other materials in HBSS, while the highest one was that of Ti-6Al-7Nb of 3.05 x10-2 mmpy. In addition, the study results show that Ti-6Al-4V ELI under thermomechanical treatment is the best material compared to others for biomedical applications, based on corrosion resistance and metal ions released into HBSS.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

176-188

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ajiz, Gunawarman, and J. Affi, The effects of short-time solution treatment and short-time aging on mechanical properties of Ti-6Al-4V for orthopaedic applications,, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 5, no. 4, p.329–334, 2015,.

DOI: 10.18517/ijaseit.5.4.556

Google Scholar

[2] M. Niinomi, D. Eylon, S. Fujishiro, and C. Ouchi, Effect of b Phase Stability at Room Temperature on Mechanical Properties in b -Rich a ؉ b Type Ti – 4 . 5Al – 3V – 2Mo – 2Fe Alloy,, vol. 42, no. 2, p.191–199, (2002).

DOI: 10.2355/isijinternational.42.191

Google Scholar

[3] M. Niinomi, Biologically and Mechanically Biocompatible Titanium Alloys Ti-6Al-4V ELI,, vol. 49, no. 10, p.2170–2178, 2008,.

DOI: 10.2320/matertrans.l-mra2008828

Google Scholar

[4] M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods,, Sci. Technol. Adv. Mater., vol. 4, no. 5, p.445–454, 2003,.

Google Scholar

[5] Y. Xu, Y. Lu, J. Liang, and R. D. Sisson, Microstructure and corrosion behaviour of additively manufactured Ti–6Al–4V with various post-heat treatments,, Mater. Sci. Technol. (United Kingdom), vol. 35, no. 1, p.89–97, 2019,.

DOI: 10.1080/02670836.2018.1542052

Google Scholar

[6] M. Abdel-Hady Gepreel and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation,, J. Mech. Behav. Biomed. Mater., vol. 20, p.407–415, 2013,.

DOI: 10.1016/j.jmbbm.2012.11.014

Google Scholar

[7] M. Özcan and C. Hämmerle, Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls,, Materials (Basel)., vol. 5, no. 9, p.1528–1545, 2012,.

DOI: 10.3390/ma5091528

Google Scholar

[8] J. Yang, H. Yang, H. Yu, Z. Wang, and X. Zeng, Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 48, no. 7, p.3583–3593, 2017,.

DOI: 10.1007/s11661-017-4087-9

Google Scholar

[9] B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution,, Corros. Sci., vol. 137, no. August 2017, p.176–183, 2018,.

DOI: 10.1016/j.corsci.2018.03.047

Google Scholar

[10] M. Sarraf et al., In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays,, J. Aust. Ceram. Soc., vol. 55, no. 1, p.187–200, 2019,.

DOI: 10.1007/s41779-018-0224-1

Google Scholar

[11] J. Lu, W. Zhang, W. Huo, Y. Zhao, W. Cui, and Y. Zhang, Electrochemical corrosion behavior and mechanical properties of nanocrystalline Ti-6Al-4V Alloy induced by sliding friction treatment,, Materials (Basel)., vol. 12, no. 5, 2019,.

DOI: 10.3390/ma12050760

Google Scholar

[12] S. Carquigny, J. Takadoum, and S. Ivanescu, Corrosion and tribocorrosion study of 316L steel, Ti–6Al–4V and Ti–10Zr–10Nb–5Ta,, Tribol. - Mater. Surfaces Interfaces, vol. 13, no. 2, p.112–119, 2019,.

DOI: 10.1080/17515831.2019.1596625

Google Scholar

[13] L. O. Berbel, E. D. P. Banczek, I. K. Karoussis, G. A. Kotsakis, and I. Costa, Correction: Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an in Vitro model of peri-implant inflammation (PLoS ONE (2019)14:1(e0210530) Doi:10.1371/journal.pone.0210530),, PLoS One, vol. 14, no. 5, p.1–17, 2019,.

DOI: 10.1371/journal.pone.0217671

Google Scholar

[14] Q. Zhang, B. Duan, Z. Zhang, J. Wang, and C. Si, Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti-6Al-4V alloy,, J. Mater. Res. Technol., vol. 11, p.1090–1099, 2021,.

DOI: 10.1016/j.jmrt.2021.01.091

Google Scholar

[15] S. Kumar, V. Pandey, K. Chattopadhyay, and V. Singh, Surface Nanocrystallization Induced by Ultrasonic Shot Peening and Its Effect on Corrosion Resistance of Ti–6Al–4V Alloy,, Trans. Indian Inst. Met., vol. 72, no. 3, p.789–792, 2019,.

DOI: 10.1007/s12666-018-1531-5

Google Scholar

[16] J. Fojt et al., Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing,, Mater. Sci. Eng. C, vol. 93, no. January, p.911–920, 2018,.

DOI: 10.1016/j.msec.2018.08.066

Google Scholar

[17] Y. Xu, J. Wang, X. Zhang, P. Wang, J. Shi, and F. Huo, Corrosion behaviour of Ti-6Al-4V alloy as dental implant containing fluoride ions,, Int. J. Electrochem. Sci., vol. 12, no. 11, p.10308–10316, 2017,.

DOI: 10.20964/2017.11.04

Google Scholar

[18] A. C. Hee et al., Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition,, Thin Solid Films, vol. 636, p.54–62, 2017,.

DOI: 10.1016/j.tsf.2017.05.030

Google Scholar

[19] O. Heintz, V. Vignal, H. Krawiec, and J. Loch, Passivity and corrosion behaviour of Ti-10Mo-4Zr and Ti-6Al-4V alloys after long-term ageing in Ringer's solution at 37 °C,, J. Solid State Electrochem., vol. 21, no. 5, p.1445–1455, 2017,.

DOI: 10.1007/s10008-017-3506-6

Google Scholar

[20] S. Gnanavel, S. Ponnusamy, L. Mohan, and C. Muthamizhchelvan, In Vitro Corrosion Behaviour of Ti–6Al–4V and 316L Stainless Steel Alloys for Biomedical Implant Applications,, J. Bio- Tribo-Corrosion, vol. 4, no. 1, p.4–11, 2018,.

DOI: 10.1007/s40735-017-0118-8

Google Scholar

[21] S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy,, Electrochim. Acta, vol. 52, no. 3, p.839–846, 2006,.

DOI: 10.1016/j.electacta.2006.06.018

Google Scholar

[22] S. Anderson, Annisa, J. Affi, Y. Yetri, and G. Gunawarman, The Effect of Aging Treatment on Mechanical Properties and Microstructures of Ti-12Cr in Ortodontic Applications,, IOP Conf. Ser. Mater. Sci. Eng., vol. 846, no. 1, 2020,.

DOI: 10.1088/1757-899x/846/1/012066

Google Scholar

[23] M. Motyka and J. Sieniawski, The influence of initial plastic deformation on microstructure and hot plasticity of α+β titanium alloys,, Arch. Mater. Sci. Eng., vol. 41, no. 2, p.95–103, (2010).

Google Scholar

[24] T. Akahori, M. Niinomi, H. Fukui, and A. Suzuki, Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thermo-mechanical treatments,, Mater. Trans., vol. 45, no. 5, p.1540–1548, 2004,.

DOI: 10.2320/matertrans.45.1540

Google Scholar

[25] P. A. Machfudzoh, M. N. Amin, L. Sandra, and D. Putri, Efektivitas Ekstrak Daun Belimbing Wuluh sebagai Bahan Inhibitor Korosi pada Kawat Ortodonsi Berbahan Dasar Nikel-Titanium ( Effectiveness of Bilimbi Leaves Extract as Corrosion Inhibitor on Nickel-Titanium Orthodontic Wire ),, Artik. Ilm. Has. Penelit. Mhs., no. kelompok 3, p.1–6, (2014).

DOI: 10.20473/cdj.v6i2.2016.82-86

Google Scholar

[26] M. F. Sfondrini et al., Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets,, Angle Orthod., vol. 79, no. 2, p.361–367, 2008,.

DOI: 10.2319/042108-223.1

Google Scholar

[27] T. Hanawa, Metal ion release from metal implants,, Mater. Sci. Eng. C, vol. 24, no. 6-8 SPEC. ISS., p.745–752, 2004,.

Google Scholar

[28] T. Albrektsson et al., The interface zone of inorganic implants In vivo: Titanium implants in bone,, Ann. Biomed. Eng., vol. 11, no. 1, p.1–27, 1983,.

DOI: 10.1007/bf02363944

Google Scholar

[29] H. G. French, S. D. Cook, and R. J. Haddad, Correlation of tissue reaction to corrosion in osteosynthetic devices,, J. Biomed. Mater. Res., vol. 18, no. 7, p.817–828, 1984,.

DOI: 10.1002/jbm.820180712

Google Scholar

[30] M. Fellah, M. Labaiz, O. Assala, L. Dekhil, and A. Iost, Tribological behavior of biomaterials for total hip prosthesis,, Trends Biomater. Artif. Organs, vol. 29, no. 1, p.22–30, (2015).

DOI: 10.1051/mattech/2014027

Google Scholar

[31] H. Fajri, J. Affi, M. Niinomi, and H. Nur, CORROSION BEHAVIO UR OF TITANIUM β TYPE Ti -12Cr in 3 % NaCl SOLUTION.,.

DOI: 10.18517/ijaseit.9.5.9380

Google Scholar

[32] S. Ardhy and J. Affi, PERILAKU KOROSI TITANIUM DALAM LARUTAN MODIFIKASI SALIVA,, vol. 6, no. 2, p.585–593, (2015).

Google Scholar

[33] M. Niinomi et al., Development of Low Rigidity β -type Titanium Alloy for Biomedical Applications,, vol. 43, no. 12, p.2970–2977, (2002).

DOI: 10.2320/matertrans.43.2970

Google Scholar

[34] and E. W. C. (1994) Boyer, R., G. Welsch, Materials Properties Handbook: Titanium Alloys. ASM International, 65–74.

Google Scholar

[35] S. Anderson, A. Satria, P. Amin, J. Affi, and Y. Yetri, Corrosion Characteristics Of Titanium TNTZ And Ti-6Al-4V ELI In Artificial Saliva Solution At Human Body Temperature,, no. 04, p.240–245, (2021).

Google Scholar

[36] A. Choubey, B. Basu, and R. Balasubramaniam, Electrochemical behavior of intermetallic Ti3Al-based alloys in simulated human body fluid environment,, Intermetallics, vol. 12, no. 6, p.679–682, 2004,.

DOI: 10.1016/j.intermet.2004.03.012

Google Scholar

[37] S. Gokul Lakshmi, V. Raman, N. Rajendran, M. A. K. Babi, and D. Arivuoli, In vitro corrosion behaviour of plasma nitrided Ti-6Al-7Nb orthopaedic alloy in Hanks solution,, Sci. Technol. Adv. Mater., vol. 4, no. 5, p.415–418, 2003,.

DOI: 10.1016/j.stam.2003.09.005

Google Scholar

[38] T. Trnava, S. Republic, and B. Polytechnic, The influence of heat treatment on the microstructure of the casted ti6al4v titanium alloy,, Mater. World, vol. 2, p.1–6, (2007).

Google Scholar

[39] M. Engineers and S. A. Scientific, CORROSION STUDY OF METALLIC BIOMATERIALS IN,, (2011).

Google Scholar

[40] V. Raman, S. Nagarajan, and N. Rajendran, Electrochemical impedance spectroscopic characterisation of passive film formed over β Ti-29Nb-13Ta-4.6Zr alloy,, Electrochem. commun., vol. 8, no. 8, p.1309–1314, 2006,.

DOI: 10.1016/j.elecom.2006.06.004

Google Scholar

[41] G. Gunawarman, Konsep dan Teori Metalurgi Fisik. Yogyakarta (ID): Andi Offset. (2013).

Google Scholar

[42] R. K. Gupta, V. A. Kumar, C. Mathew, and G. S. Rao, Strain hardening of Titanium alloy Ti6Al4V sheets with prior heat treatment and cold working,, Mater. Sci. Eng. A, vol. 662, p.537–550, 2016,.

DOI: 10.1016/j.msea.2016.03.094

Google Scholar