Manufacture of Wear-Resistant Alloy Co-Cr-Mo for Medical Implant Applications by Nitriding Coating Method

Article Preview

Abstract:

Nitrogen doped as-cast Co-Cr-Mo alloy with markedly enhanced hardness and wear resistance was successfully produced by pack nitriding process. Nitriding proses used the in-pack process using urea fertilizer as a nitrogen source. It was carried out with variations in temperature of 400°C, 500°C, 600°C and followed by annealing. The wear resistance of the specimen is tested using pin-on-disk. The total sample will be soaked in the lactic acid solution for 3 days. The results obtained from the After nitriding process, the hardness of of speciment N400 obtained a hardness value of 261.54 HV speciment N500 of 309.68 HV, and speciment N600 of 429.14 HV, the results of the hardness value increased in each speciment. The wear resistance value obtained for each speciment N400, N500, N600 is 2,81 x 10-6 mm3/Nm, 7,50 x 10-7 mm3/Nm, 1,87 x 10-7 mm3/Nm. The nitriding process forms a layer on the surface of the as-cast Co-Cr-Mo, it’s called Layer of Cr-N which is the result of heating/decomposing urea fertilizer into nitrogen gas which can coat the surface so that Cr-N bonds are formed in the layer. The thickness of the Cr-N layer on the N400 specimen is 0.28 mm, N500 is 0.35 mm, N600 is 0.38 mm. In addition, the surface results that have been tested for wear resistance form quite fine scratches but the formation of abrasions, such as abrasion, abrasion groove, delamination, and cohesive failure

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

211-217

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Balagna, S. Spriano, M.G. Faga, Characterization of Co-Cr-Mo alloys after a thermal treatment for high wear resistance, Mater. Sci. Eng. 32 (2012) 1868-77.

DOI: 10.1016/j.msec.2012.05.003

Google Scholar

[2] A.J. Aminatun, T. Saktiani, Optimalisasi Sifat Mekkanik Paduan Kobalt Sebagai Implan Tulang Prosthesis Melalui Proses Sintering, Malang, (2013).

Google Scholar

[3] A. Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima, Heat treatment of ASTM F75 Co-Cr-Mo-C-Si-Mn alloys, Mater. Sci. Forum. 654-656 (2010) 2180-3.

DOI: 10.4028/www.scientific.net/msf.654-656.2180

Google Scholar

[4] Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, Y. Koizumi and A. Chiba, Effects of sigma phase and carbide on the wear behavior of CoCrMo alloys in Hanks' solution, Wear. 310 (2014) 51-62.

DOI: 10.1016/j.wear.2013.12.010

Google Scholar

[5] Q. Wang, C. Huang, L. Zhang, Microstructure and tribological properties of plasma nitriding cast CoCrMo alloy, J. Mater. Sci. Technol. 28 (2012) 60-6.

DOI: 10.1016/s1005-0302(12)60024-3

Google Scholar

[6] I. Campos-silva, M. Ortiz-dominguez, M. Elias-espinosa, R.C. Vega-morón, D. Bravo-bárcenas and U. Figueroa-lópez, The powder-pack nitriding process: growth kinetics of nitride layers on pure iron, J. Mater. Eng. Perform. 24 (2015) 3241-50.

DOI: 10.1007/s11665-015-1642-7

Google Scholar

[7] A. Çelik, Ö. Bayrak, A. Alsaran, I. Kaymaz and A.F. Yetim, Effects of plasma nitriding on mechanical and tribological properties of CoCrMo alloy, Surf. Coatings Technol. 202 (2008) 2433-8.

DOI: 10.1016/j.surfcoat.2007.08.030

Google Scholar

[8] Z. Werner, M. Barlak, M. Gradzka-Dahlke, R. Diduszko, W. Szymczyk, J. Dabrowski, J. Piekoszewski and K. Borkowska, The effect of ion implantation on the wear of Co-Cr-Mo alloy, Vacuum. 81 (2007) 1191-4.

DOI: 10.1016/j.vacuum.2007.01.014

Google Scholar

[9] B. Bayrak, H. Kovaci, F. Yildiz, A.F. Yetim and A. Çelik, Dry sliding wear characteristics of plasma-nitrocarburized Co-Cr-Mo alloy, Met. Sci. Heat Treat. 58 (2017) 742-7.

DOI: 10.1007/s11041-017-0089-x

Google Scholar

[10] N.I. Zainal Abidin, A.D. Atrens, D. Martin and A. Atrens, Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37°C, Corros. Sci. 53 (2011) 3542-56.

DOI: 10.1016/j.corsci.2011.06.030

Google Scholar

[11] I. Hidayah, The increased of lactic acid concentration in the blood after work indonesia, J. Occup. Saf. Heal. 7 (2018) 131.

Google Scholar

[12] A. Candra, G. Rusip, Y. Machrina, The effect of aerobic exercise to lactic acid and borg scale football, J. MKMI. 12 (2016) 7-13.

Google Scholar

[13] J.J. Heckman, R. Pinto, P.A. Savelyev, Pengaruh pemulihan aktif jogging terhadap penurunan asam laktat pada olahraga bulutangkis, J. Sport Area. (2019) 10-8.

DOI: 10.24114/so.v2i1.12873

Google Scholar

[14] A.B. Setiawan, W. Purwadi, Pengaruh temperatur dan waktu proses nitridasi terhadap kekerasan permukaan FCD 700 dengan media nitridasi urea, Semin. Nas. Kluster Ris. Tek. Mesin. (2009) 35-40.

DOI: 10.31963/sinergi.v20i1.3474

Google Scholar

[15] J.M. Claros, E. Nascimento, A.S. D'Oliveira, Effect of the oxide film on the sliding wear behavior of a CoCrMoSi alloy hardfacing coating, ABCM International Congress (2018) 1-8.

DOI: 10.26678/abcm.cobem2017.cob17-2328

Google Scholar

[16] K. Ueda, K. Nakaie, S. Namba, T. Yoneda, K. Ishimizu and T. Narushima, Mass loss and ion elution of biomedical Co-Cr-Mo alloys during pin-on-disk wear tests, Mater. Trans. (2013) 1-7.

DOI: 10.2320/matertrans.me201316

Google Scholar

[17] J.A. Ortega-saenz, M.A.L. Hernandez-rodriguez, V. Ventura-sobrevilla and R. Michalczewski, Tribological and corrosion testing of surface engineered surgical grade CoCrMo alloy, Wear. 271 (2011) 2125-31.

DOI: 10.1016/j.wear.2010.12.062

Google Scholar