[1]
P. Sahoo, S.K. Das, Tribology of electroless nickel coatings – A review, Materials and Design, 32 (2011) 1760–1775.
DOI: 10.1016/j.matdes.2010.11.013
Google Scholar
[2]
S. Kundu, S.K. Das, P. Sahoo, Properties of electroless nickel at elevated temperature-a review, Proc. Eng. 97 (2014) 1698 – 1706.
DOI: 10.1016/j.proeng.2014.12.321
Google Scholar
[3]
P. Sivasakthi, M.V. Sangaranarayanan, Influence of pulse and direct current on electrodeposition of Ni-Gd2O3 nanocomposite for micro hardness, wear resistance and corrosion resistance applications, Composites Communications, 13 (2019) 134–142.
DOI: 10.1016/j.coco.2019.04.008
Google Scholar
[4]
G.N.K.R. Bapu, S. Jayakrishnan, Oxidation characteristics of electrodeposited nickel-zirconia composites at high temperature, Material Chemistry Physics, 96 (2006) 321–325.
DOI: 10.1016/j.matchemphys.2005.07.021
Google Scholar
[5]
M. Kumar, R. Mitra, Effect of substrate temperature and annealing on tructure, stress and properties of reactively co-sputtered Ni-TiN nanocomposite, Thin Solid Films, 624 (2017) 70-82.
DOI: 10.1016/j.tsf.2017.01.024
Google Scholar
[6]
C. Ma, W. Yu, M. Jiang, W. Cui, F.F. Xia, Jet pulse electrodeposition and characterization of Ni-AlN nanocoatings in presence of ultrasound, Ceramic International, 44 (2018) 5163-5170.
DOI: 10.1016/j.ceramint.2017.12.121
Google Scholar
[7]
M.A. Khazrayie, A.R.S. Aghdam, Si3N4/Ni nanocomposite formed by electroplating: Effect of average size of nanoparticulates, Transactions of Nonferrous Metals Society of China, 20 (2010) 1017-1023.
DOI: 10.1016/s1003-6326(09)60251-x
Google Scholar
[8]
F.C. Walsh, S. Wang, N. Zhou, The Electrodeposition of Composite Coatings: Diversity, Applications and Challenges, Current Opinion in Electrochemistry, 20 (2020) 8-19.
DOI: 10.1016/j.coelec.2020.01.011
Google Scholar
[9]
G. Kalkabay, A. Kozlovskiy, M. Zdorovets, D. Borgekov, E. Kaniukov, A. Shumskaya, Influence of temperature and electrodeposition potential on structure and magnetic properties of nickel nanotubes, Journal of Magnetism and Magnetic Materials, 489 (2019) 165436.
DOI: 10.1016/j.jmmm.2019.165436
Google Scholar
[10]
M. Alizadeh, A. Cheshmpish, Electrodeposition of Ni-Mo/Al2O3 nano-composite coatings at various deposition current densities, Applied Surface Science, 466 (2019) 433–440.
DOI: 10.1016/j.apsusc.2018.10.073
Google Scholar
[11]
S. Kumaraguru, G.G. Kumar, S. Shanmugan, S. Mohan, R.M. Gnanamuthu, Enhanced texture and microhardness of the nickel surface using Bi2O3 particles via electrodeposition technique for engineering application, Journal of Alloys and Compounds, 753 (2018) 740-747.
DOI: 10.1016/j.jallcom.2018.03.350
Google Scholar
[12]
J.S. Santos, R. Matos, F. Trivinho-Strixino, E.C. Pereira, Effect of temperature on Co electrodeposition in the presence of boric acid, Electrochimica Acta, 53 (2007) 644–649.
DOI: 10.1016/j.electacta.2007.07.025
Google Scholar
[13]
DA. Bograchev, A.D. Davydov, Effect of applied temperature gradient on instability of template-assisted metal electrodeposition, Electrochimica Acta, 296(1) (2019) 1054.
DOI: 10.1016/j.electacta.2018.11.092
Google Scholar
[14]
Lv. Jinlong, L. Tongxiang, W. Chen, Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel, Solid State Chem., 240 (2016)109-114.
DOI: 10.1016/j.jssc.2016.05.025
Google Scholar
[15]
M. Lekka, Electrochemical Deposition of Composite Coatings, Encyclopedia of Interfacial Chemistry (2018) 54-67.
DOI: 10.1016/b978-0-12-409547-2.11716-0
Google Scholar
[16]
S.T. Aruna, S. Roy, A. Sharma, G. Savitha, V.K.W. Grips, Cost-effective wear and oxidation resistance electrodeposited Ni-pumice coating, Surface & Coating Technology, 251 (2014) 201-209.
DOI: 10.1016/j.surfcoat.2014.04.026
Google Scholar
[17]
M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.K.W. Grips, High temperature oxidation and corrosion behaviour of Ni/Ni–Co–Al composite coatings, Applied Surface Science, 263 (2012) 597-607.
DOI: 10.1016/j.apsusc.2012.09.115
Google Scholar
[18]
C. Sun, X. Liu, C. Zhou, C. Wang, H. Cao, Preparation and Wear Properties of Magnetic Assisted Pulse Electrodeposited Ni–SiC Nanocoatings, Ceramics International, 45(1) (2019) 1348-1355.
DOI: 10.1016/j.ceramint.2018.07.242
Google Scholar
[19]
B. Li, W. Zhang, Microstructural, surface and electrochemical properties of pulse electrodeposited Ni–W/Si3N4 nanocomposite coating, Ceramics International, 44(16) (2018) 19907-19918.
DOI: 10.1016/j.ceramint.2018.07.254
Google Scholar
[20]
L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating, Applied Surface Science, 252 (2006) 3591–3599.
DOI: 10.1016/j.apsusc.2005.05.035
Google Scholar
[21]
K. Vipindas, J. Mathew, Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al-4V and analysis of surface roughness, Wear, 424–425 (2019) 165–182.
DOI: 10.1016/j.wear.2019.02.018
Google Scholar
[22]
H. Zhao, X.H. Wang, Q.L. Liu, L.J. Chen, Z. Liu, Structure and wear resistance of TiN and TiAlN coatings on AZ91 alloy deposited by multi-arc plating, Transactions of Nonferrous Metals Society of China, 20 (2010) 679-682.
DOI: 10.1016/s1003-6326(10)60561-4
Google Scholar
[23]
A.C. Lee, H.H. Lu, H.T. Lin, P. Sajgalík, D.F. Lii, P.K. Nayak, C.Y. Chena, J.L. Huang, Nanopowder processing of ultrafine Si3N4 with improved wearresistance, Journal of Asian Ceramic Societies, 3 (2015) 6-12.
DOI: 10.1016/j.jascer.2014.09.004
Google Scholar
[24]
S. Veprek, S.G. Prilliman, S.M. Clark, Elastic moduli of nc-TiN/a-Si3N4 nanocomposites: compressible, yet superhard, J. Phy. Chem. Solids, 71 (2010) 1175-1178.
DOI: 10.1016/j.jpcs.2010.03.029
Google Scholar
[25]
L. Aguilera, Y. Leyet, R. Barcelay, E.H.N.S. Thaines, A.J. Terezo, G.L.C. Souza, R.G. Freitas, R.R. Passos, L.A. Pocrifka, Influence of electrodeposition temperature in the electrochemical properties of Ni(OH)2: An experimental and theoretical study, Thin Solid Films, 670 (2019) 24-33.
DOI: 10.1016/j.tsf.2018.12.007
Google Scholar
[26]
R. Mousavi, M.E. Bahrololoom, F. Deflorian, Preparation, corrosion, and wear resistance of Ni‐Mo/Al composite coating reinforced with Al particles, Materials and Design, 110 (2016) 456–465.
DOI: 10.1016/j.matdes.2016.08.019
Google Scholar
[27]
J. Vanpaemel, M. Sugiura, D. Cuypers, M.H.V.D. Veen, S.D. Gendt, P.M. Vereecken, Electrochemical Deposition of Subnanometer Ni Films on TiN, ACS Publications (2014).
DOI: 10.1021/la404852m
Google Scholar
[28]
X. B. Zhu, C. Cai, G.Q. Zheng, Z. Zhang, J.F. Li, Electrodeposition and corrosion behavior of nanostructured Ni-TiN composite films, Trans. Nonferrous Met. Soc. China, 21 (2011) 2216-2224.
DOI: 10.1016/s1003-6326(11)60998-9
Google Scholar
[29]
C. Feng, S. Hu, Y. Jiang, N. Wu, M. Li, L. Xin, S. Zhu, F. Wang, Effects of Si content on microstructure and mechanical properties ofTiAlN/Si3N4-Cu nanocomposite coatings, Applied Surface Science, 320 (2014) 689–698.
DOI: 10.1016/j.apsusc.2014.09.041
Google Scholar
[30]
A. Robin, J.C.P. de Santana, A.F. Sartori, Co-electrodeposition and characterization of Cu–Si3N4 composite coatings, Surface & Coatings Technology, 205 (2011) 4596–4601.
DOI: 10.1016/j.surfcoat.2011.03.142
Google Scholar
[31]
P. Das, S. Anwar, S. Bajpai, S. Anwar, Structural and mechanical evolution of TiAlSiN nanocomposite coating under influence of Si3N4 power, Surface & Coating Technology, 307 (2016) 676-682.
DOI: 10.1016/j.surfcoat.2016.09.065
Google Scholar
[32]
L. Lan, W. Xuan, J. Wang, C. Li, Z. Ren, J. Yu, J. Peng, Interfacial microstructure of partial transient liquid phase bonding of Si3N4 to nickel-base superalloy using Ti/Au/Ni interlayers, Vacuum, 130 (2016) 105-108.
DOI: 10.1016/j.vacuum.2016.04.033
Google Scholar
[33]
L. Kurmanaeva, J. McCrea, J. Jian, J. Fiebig, H. Wang, A.K. Mukherjee, E.J. Lavernia, Influence of layer thickness on mechanical properties of multi-layered NiFe samples processed by electrodeposition, Materials and Design, 90 (2016) 389–395.
DOI: 10.1016/j.matdes.2015.10.137
Google Scholar
[34]
S. Dolinšek, B. Šuštarši, J. Kopa, Wear mechanisms of cutting tools in high-speed cutting processes, Wear, 250 (2001) 349–356.
DOI: 10.1016/s0043-1648(01)00620-2
Google Scholar
[35]
Y.F. Shen, W.Y. Xue, Y.D. Wang, Z.Y. Liu, L. Zuo, Mechanical properties of nanocrystalline nickel films deposited by pulse plating, Surface & Coatings Technology, 202 (2008) 5140–5145.
DOI: 10.1016/j.surfcoat.2008.05.027
Google Scholar
[36]
C.C. Liu, J.L. Huang, Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball, Materials Science and Engineering, A 384 (2004) 299–307.
DOI: 10.1016/s0921-5093(04)00853-6
Google Scholar
[37]
S. Zhang, D. Sun, Y. Fu, Y.T. Pei, J.Th.M. De Hosson, Ni-toughened nc-TiN/a-SiNx nanocomposite thin films, Surface & Coatings Technology, 200 (2005) 1530 – 1534.
DOI: 10.1016/j.surfcoat.2005.08.080
Google Scholar