Screening and Toxicity Assay of Bioactive Compounds from Ethyl Acetate Extract of Indonesian Marine Sponge Dysidia sp. from Hoga Island

Article Preview

Abstract:

Screening of the toxic active compounds from the ethyl acetate fraction of the sponge Dysidea sp. from Hoga Island, Wakatobi National Park. This study aims to determine the toxic properties of the ethyl acetate fraction of sponge Dysidea sp. Isolation was carried out by extraction method using methanol as solvent, then the extract was partitioned using various solvents, such as N-Hexane, Dichloromethane, Ethyl Acetate and Acetone. The obtained fraction was then tested for toxicity using the Brine Shrimp Lethality Test (BSLT) and phytochemical tests. Identification of compounds from the fraction that have toxic properties were then identified using Liquid Chromatography – High Resolution Mass Spectrometry (LC-HRMS). The ethyl acetate fraction obtained was 1.5 grams in the form of a green solid paste. LC-HRMS analysis showed that the ethyl acetate fraction contained 3 reported compounds and 2 unreported compounds.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

165-171

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.J. Geider, E.H. Delucia, P.G. Falkowski, A.C. Finzi, J.P. Grime, J. Grace, T.M. Kana, J. La Roche, S.P. Long, B.A. Osborne, T. Platt, I.C. Prentice, J.A. Raven, W.H. Schlesinger, V. Smetacek, V. Struart, S. Sathyendranath, R.B. Thomas, T.C. Vofelmann, P. Williams, F.I. Woodward, Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats, Global Change Biol. 7 (2001) 849–882.

DOI: 10.1046/j.1365-2486.2001.00448.x

Google Scholar

[2] M. Ahmed, C.K. Chong, H. Cesar, Economic Evaluation and Policy Priorities for Sustainable Management of Coral Reefs, WorldFish Centre, Penang, (2004).

Google Scholar

[3] S. McMellor, D.J. Smith, Coral Reefs of the Wakatobi: Abundance and biodiversity, in: J. Clifton, R.K.F. Unsworth, D.J. Smith (Eds.), Marine Research and Conservation in the Coral Triangle–The Wakatobi National Park, Nova Science Publisher, New York, 2010, p.19–33.

DOI: 10.1007/s00338-002-0250-9

Google Scholar

[4] R.W.M. Van Soest, N. Boury-Esnault, J. Vacelet, M. Dohrmann, D. Erpenbeck, N.J. de Voogd, N. Santodomingo, B. Vanhoorne, M. Kelly, J.N.A. Hooper, Global Diversity of sponges (Porifera), PLoS ONE 7 (2012) e35105.

DOI: 10.1371/journal.pone.0035105

Google Scholar

[5] M.J. Uriz, D. Rosell, D. Martin, The sponge population of the Cabrera Archipelago (Balearic Islands): Characteristics, distribution, and abundance of the most representative species, Mar. Ecol. 13 (1992) 101–117.

DOI: 10.1111/j.1439-0485.1992.tb00343.x

Google Scholar

[6] G.M. Cameron, B.L. Stapleton, S.M. Simonsen, D.J. Brecknell, M.J. Garson, New sesquiterpene and brominated metabolites from the tropical marine sponge Dysidea sp., Tetrahedron 56 (2000), 5247–5252.

DOI: 10.1016/s0040-4020(00)00434-8

Google Scholar

[7] N. Hanif, J. Tanaka, A. Setiawan, A. Trianto, N.J. de Voogd, A. Murni, C. Tanaka, T. Higa, Polybrominated diphenyl ethers from the Indonesian sponge Lamellodysidea herbacea, J. Nat. Prod. 70 (2007), 432–435.

DOI: 10.1021/np0605081

Google Scholar

[8] A.D. Patil, A.J. Freyer, L. Killmer, P. Offen, B. Carte, A.J. Jurewicz, R.K. Johnson, Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeleton from the sponge Dysidea frondosa: Inhibitors of interleukin-8 receptors, Tetrahedron 53 (1997), 5047–5060.

DOI: 10.1016/s0040-4020(97)00205-6

Google Scholar

[9] Y.K. Hallock, J.H. Cardellina, M.R. Boyd, (-)-Frondosins A and D, HIV-Inhibitory sesquiterpene hydroquinone derivatives from Euryspongia sp., Nat. Prod. Lett. 11 (1998) 153–160.

DOI: 10.1080/10575639808041212

Google Scholar

[10] Y.H. Gui, L. Liu, W. Wu, Y. Zhang, Z.L. Jia, Y.P. Shi, H.T. Kong, K.C. Liu, W.H. Jiao, H.W. Lin, Discovery of nitrogenous sesquiterpene quinone derivates from sponge Dysidea Septosa with anti-inflammatory activity in vivo zebrafish model, Bioorg. Chem. 94 (2020) 103435.

DOI: 10.1016/j.bioorg.2019.103435

Google Scholar

[11] P.V. Kiem, N.X. Nhiem, B.H. Tai, H.L.T. Anh, D.T.T. Hang, N.T. Cuc, L.T. Huyen, N.H. Nam, P.H. Yen, D.C. Thung, C.V. Minh, Bis-sesquiterpene from the marine sponge Dysidea fragilis, Nat. Prod. Commun. 11 (2016) 439–441.

DOI: 10.1177/1934578x1601100403

Google Scholar

[12] N.K. Utkina, V.A. Danisenko, Tauroarenarones A and B, new taurine-containing meroterpenoids from the marine sponge Dysidea sp., Nat. Prod. Commun. 9 (2014) 757–758.

DOI: 10.1177/1934578x1400900606

Google Scholar

[13] E. Perez-Garcia, E. Zubia, M.J. Ortega, J.L. Carballo, Merosesquiterpenes from two sponges of The Genus Dysidea, J. Nat. Prod. 68 (2016) 653–658.

DOI: 10.1021/np040237z

Google Scholar

[14] U. Hentschel, K.M. Usher, M.W. Taylor, Marine sponges as microbial fermenters, FEMS Microbiol. Ecol. 55 (2006) 167–177.

DOI: 10.1111/j.1574-6941.2005.00046.x

Google Scholar

[15] M.F. Mehbub, J. Lei, C. Franco, W. Zhang, Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives, Mar. Drugs 12 (2014) 4539–4577.

DOI: 10.3390/md12084539

Google Scholar

[16] J.R. Pawlik, G. McFall, S. Zea, Does the odor from sponges of the genus Ircinia protect them from fish predators?, J. Chem. Ecol. 28 (2002) 1103–1115.

Google Scholar

[17] B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E. Nichols, J.L. McLaughlin, Brine shrimp: A convenient general bioassay for active plant constituents, Planta Med. 45 (1982) 31–34.

DOI: 10.1055/s-2007-971236

Google Scholar

[18] C. Jimènez, E. Quińoã, M. Adamczeski, L.M. Hunter, P. Crews, Novel sponge-derived amino acids. 12. Tryptophan-derived pigments and accompanying sesterterpenes from Fascalysinopsis reticulata, J. Org. Chem. 56 (1991) 3403–3410.

DOI: 10.1021/jo00010a041

Google Scholar

[19] X. Yang, M.C. Kang, K.W. Lee, S.M. Kang, W.W. Lee, Y.J. Jeon, Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum, Algae 26 (2011) 201–208.

DOI: 10.4490/algae.2011.26.2.201

Google Scholar

[20] R. Hodges, A.L. Porte, The structure of loliolide: A terpene from Lolium perenne, Tetrahedron 20 (1964) 1463–1467.

DOI: 10.1016/s0040-4020(01)99140-9

Google Scholar

[21] H. Martin-Rivilla, F.J. Gutierres-Manero, A. Gradillas, M.O.P. Navarro, G. Andrade, J.A. Lucas, Identifying the compound of the metabolic elicitors of Pseudomonas flourescens N 21.4 responsible for their ability to induce plant resistance, Plants 9 (2020) 1020.

DOI: 10.3390/plants9081020

Google Scholar