Synthesis and Antimalarial Activity Assay of C- Arylcalix[4]pyrogallolarenes Using Heme Polymerization Inhibition Activity (HPIA) Method

Article Preview

Abstract:

Malaria is one of the most devastating and widespread tropical parasitic diseases in developing countries with high prevalence. Furthermore, antimalarial drug resistance results in a global resurgence of malaria. Thus there is an urgent need to find new and active antimalarial agents. In this work, we reported the synthesis of C-arylcalix[4]pyrogallolarenes and their in vitro activity assay as new antimalarial agent candidates. The C-arylcalix[4]pyrogallolarenes were prepared in high yields through a condensation reaction between pyrogallol and aromatic aldehydes (i.e., benzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, and 2-chlorobenzaldehyde) under acidic conditions. The antimalarial activity of C-arylcalix[4]pyrogallolarenes was tested using the Heme Polymerization Inhibition Activity (HPIA) method with chloroquine diphosphate as the positive control. The heme polymerization inhibitory activity was reflected from the IC50 values in which the IC50 values were obtained from probit analysis using IBM SPSS statistics 25 software. The result showed that the IC50 values of C-arycalix[4]pyrogallolarene derivatives were in a range of 0.238–1.268 mg/mL, which were lower than chloroquine diphosphate (IC50 = 2.788 mg/mL). This finding reveals that the C-arylcalix[4]pyrogallolarenes are potential antimalarial agents to be developed in the future.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

187-193

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.J.L. Murray, L.C. Rosenfeld, S.S. Lim, K.G. Andrews, K.J. Foreman, D. Haring, N. Fullman, M. Naghavi, R. Lorenzo, A.D. Lopez, Global malaria mortality between 1980-2010: A systematic analysis, The Lancet 319 (2012) 413–431.

DOI: 10.1016/s0140-6736(12)60034-8

Google Scholar

[2] World Health Organization (WHO), World Malaria Report, World Health Organization Press, Geneva, (2020).

Google Scholar

[3] D. Rathore, D. Jani, R. Nagrakatti, S. Kumar, Heme detoxification and antimalarial drug – Known mechanisms and future prospect, Drug Discovery Today: Ther. Strategies 3 (2006) 153–158.

DOI: 10.1016/j.ddstr.2006.06.003

Google Scholar

[4] N.T. Huy, D.T. Uyen, A. Maeda, D.T.X. Trang, T. Oida, S. Harada, K. Kamei, Simple colorimetric inhibition assay of heme crystallization for high-throughput screening of antimalarial compounds, Antimicrob. Agents Chemother. 51 (2007) 350–353.

DOI: 10.1128/aac.00985-06

Google Scholar

[5] D. Fitriastuti, M.I.D. Mardjan, Jumina, Mustofa, Synthesis and heme polymerization inhibitory activity (HPIA) assay of antiplasmodial of (1)-N-(3,4-dimethoxybenzyl)-1,10-phenanthrolinium bromide from vanillin, Indones. J. Chem. 14 (2014) 1–6.

DOI: 10.22146/ijc.21260

Google Scholar

[6] C. Surjadjaja, A. Surya, J.K. Baird, Epidemiology of Plasmodium vivax in Indonesia, Am. J. Trop. Med. Hyg. 95 (2016) 121–132.

DOI: 10.4269/ajtmh.16-0093

Google Scholar

[7] N. Latifah, A. Subarnas, A.Y. Chaerunisaa, Antimalarial medicine and its mechanism: A review, Majala Farmasetika 5 (2020) 39–48.

DOI: 10.24198/mfarmasetika.v5i1.25927

Google Scholar

[8] B. Kurniawan, N. Irawati, J.F. Suwandi, D.H. Tjong, Study of the K13 gene polymorphisms in Plasmodium falciparum in Pesawaran, Lampung, Indonesia, Pak. J. Biotechnol. 15 (2018) 871–874.

Google Scholar

[9] S.Y. Prabawati, A. Mufidati, T.R. Djuwita, S.N. Nagini, Grinding technique on a synthesis of calixarene and its derivatives, EKSAKTA J. Sci. Data Anal. 1 (2020) 117–123.

DOI: 10.20885/eksakta.vol1.iss2.art4

Google Scholar

[10] F.N. Pur, Calix[4]API-s: fully functionalized calix[4]arene-based facial active pharmaceutical ingredients, Mol. Diversity 25 (2020) 1247–1258.

DOI: 10.1007/s11030-020-10042-0

Google Scholar

[11] E. Da Silva, A.N. Lazar, A.W. Coleman, Biopharmaceutical applications of calixarenes, J. Drug Delivery Sci. Technol. 14 (2004) 3–20.

DOI: 10.1016/s1773-2247(04)50001-1

Google Scholar

[12] B. Mokhtari, K. Pourabdullah, Applications of calixarene nano-baskets in pharmacology, J. Inclusion Phenom. Macrocyclic Chem. 73 (2012) 1–15.

DOI: 10.1007/s10847-011-0062-z

Google Scholar

[13] S. Kellici, J. Acord, A. Vaughn, N.P. Power, D.J. Morgan, T. Heil, S.P. Facq, G.I. Lampronti, Calixarene assisted rapid synthesis of silver-graphene nanocomposites with enhanced antibacterial activity, ACS Appl. Mater. Interfaces 8 (2016) 19038–19046.

DOI: 10.1021/acsami.6b06052

Google Scholar

[14] R.B. Shah, N.N. Valand, P.G. Sutariya, S.K. Menon, Design, synthesis and characterization of quinolone-pyrimidine linked calix[4]arene scaffolds as antimalarial agents, J. Inclusion Phenom. Macrocyclic Chem. 84 (2016) 173–178.

DOI: 10.1007/s10847-015-0581-0

Google Scholar

[15] N. Basilico, E. Pagani, D. Monti, P. Olliaro, D. Taramelli, A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs, J. Antimicrob. Chemother. 42 (1998) 55–60.

DOI: 10.1093/jac/42.1.55

Google Scholar

[16] H.L. Qin, Z.W. Zhang, R. Lekkala, H. Alsulami, K.P. Rakesh, Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review, Eur. J. Med. Chem. 193 (2020) 112215.

DOI: 10.1016/j.ejmech.2020.112215

Google Scholar

[17] E.L. Dodd, D.S. Bohle, Orienting the heterocyclic periphery: a structural model for chloroquine's antimalarial activity, Chem. Commun. 50 (2014) 13765–13768.

DOI: 10.1039/c4cc05328a

Google Scholar

[18] D. Fitriastuti, T.S. Julianto, A.W.N. Iman, Identification and heme polymerization inhibition activity (HPIA) assay of ethanolic extract and fraction of temu mangga (Curcuma mangga Val.) rhizome, EKSAKTA J. Sci. Data Anal. 1 (2020) 64–72.

DOI: 10.20885/eksakta.vol1.iss1.art10

Google Scholar

[19] P.M. O'Neill, V.E. Barton, S.A. Ward, The molecular mechanism of action of artemisinin-the debate continues, Molecules 15 (2010) 1705–1712.

DOI: 10.3390/molecules15031705

Google Scholar

[20] R. Kumar, D. Mohanakrishnan, A. Sharma, N.K. Kaushik, K. Kalia, A.K. Sinha, D. Sahal, Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: Synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural 𝛽-asarone, Eur. J. Med. Chem. 45 (2010) 5292–5301.

DOI: 10.1016/j.ejmech.2010.08.049

Google Scholar