[1]
D.G. Lalloo, D. Shingadia, D.J. Bell, N.J. Beeching, C.J.M. Whitty, P.L. Chiodini, UK malaria treatment guidelines 2016, J. Infect. 72 (2016) 635–649.
DOI: 10.1016/j.jinf.2016.02.001
Google Scholar
[2]
WHO, World Malaria Report 2017, World Health Organization, Geneva, (2017).
Google Scholar
[3]
J.M. Wooden, L.H. Hartwell, B. Vasquez, C.H. Sibley, Analysis in yeast of antimalaria drugs that target the dihydrofolate reductase of Plasmodium falciparum, Mol. Biochem. Parasitol. 85 (1997) 25–40.
DOI: 10.1016/s0166-6851(96)02808-3
Google Scholar
[4]
R. Hadanu, C. Anwar, J. Jumina, Synthesis of antimalarial 3-(2-hydroxyethyl)-2-methyl-1,10-phenanthroline-4-ol from 8-aminoquinoline, Indones. J. Chem. 4 (2004) 82–87.
DOI: 10.22146/ijc.21858
Google Scholar
[5]
A. Sid, A. Messai, C. Parlak, N. Kazancı, D. Luneau, G. Keşan, L. Rhyman, I.A. Alswaidan, P. Ramasami, 1-Formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline: Synthesis, characterization, antimicrobial activity and DFT studies, J. Mol. Struct. 1121 (2016) 46–53.
DOI: 10.1016/j.molstruc.2016.05.043
Google Scholar
[6]
T.D. Wahyuningsih, A.A.T. Suma, E. Astuti, Synthesis, anticancer activity, and docking study of N-acetylpyrazolines from veratraldehyde, J. Appl. Pharm. Sci. 9 (2019) 014–020.
Google Scholar
[7]
S. Bano, M.S. Alam, K. Javed, M. Dudeja, A.K. Das, A. Dhulap, Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents, Eur. J. Med. Chem. 95 (2015) 96–103.
DOI: 10.1016/j.ejmech.2015.03.031
Google Scholar
[8]
V.K. Mishra, M. Mishra, V. Kashaw, S.K. Kashaw, Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents, Bioorg. Med. Chem. 25 (2017) 1949–(1962).
DOI: 10.1016/j.bmc.2017.02.025
Google Scholar
[9]
S. Sharma, S. Kaur, T. Bansal, J. Gaba, Review on synthesis of bioactive pyrazoline derivatives, Chem. Sci. Trans. 3 (2014) 861–875.
Google Scholar
[10]
B.N. Acharya, D. Saraswat, M. Tiwari, A.K. Shrivastava, R. Ghorpade, S. Bapna, M.P. Kaushik, Synthesis and antimalarial evaluation of 1,3,5-trisubstituted pyrazolines, Eur. J. Med. Chem. 45 (2010) 430–438.
DOI: 10.1016/j.ejmech.2009.10.023
Google Scholar
[11]
A.A.T. Suma, T.D. Wahyuningsih, D. Pranowo, Synthesis and antibacterial activities of N-phenylpyrazolines from veratraldehyde, Mater. Sci. Forum 901 (2017) 124–132.
DOI: 10.4028/www.scientific.net/msf.901.124
Google Scholar
[12]
N. Yadav, S.K. Dixit, A. Bhattacharya, L.C. Mishra, M. Sharma, S.K. Awasthi, V.K. Bhasin, Antimalarial activity of newly synthesized chalcone derivatives in vitro, Chem. Biol. Drug Des. 80 (2012) 340–347.
DOI: 10.1111/j.1747-0285.2012.01383.x
Google Scholar
[13]
M. Chen, T.G. Theander, S.B. Christensen, L. Hviid, L. Zhai, A. Kharazmi, Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection, Antimicrob. Agents Chemother. 38 (1994) 1470–1475.
DOI: 10.1128/aac.38.7.1470
Google Scholar
[14]
N. Basilico, E. Pagani, D. Monti, P. Olliaro, D. Taramelli, A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs, J. Antimicrob. Chemother. 42 (1998) 55–60.
DOI: 10.1093/jac/42.1.55
Google Scholar
[15]
O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 31 (2010) 455–461.
DOI: 10.1002/jcc.21334
Google Scholar
[16]
A.B. Nielsen, A.J. Holder, Gauss View 5.0, User's Reference, Gaussian Inc., Pittsburgh, (2009).
Google Scholar
[17]
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, (2009).
Google Scholar
[18]
BIOVIA, Dassault Systèmes Discovery Studio Visualizer 2020, Dassault Systèmes, San Diego, (2020).
Google Scholar
[19]
G. Wanare, R. Aher, N. Kawathekar, R. Ranjan, N.K. Kaushik, D. Sahal, Synthesis of novel α-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors, Bioorg. Med. Chem. Lett. 20 (2010) 4675–4678.
DOI: 10.1016/j.bmcl.2010.05.069
Google Scholar