Electrospinning of Poly(Caprolactone)/Gelatin/Clindamycin Nanocomposites as an Antibacterial Wound Dressing

Article Preview

Abstract:

These days, nanofibers are used in the medical sector, such as drug delivery and wound dressing structures, because of their excellent characteristics, high permeability, and important surface area. Natural and synthetic polymers may be electrospun in the form of a blend. Besides, the antibiotics such as linezolid, enrofloxacin, and vancomycin are used in wound dressing due to their antibacterial properties. In this research, the blend nanofibrous structures made of PCL and gelatin (Gel) with a 25:75 ratio were produced for wound dressing applications. Clindamycin HCL as a drug was added to Gel and PCL polymeric solutions. Surface morphology, functional groups, and hydrophilicity of nanofibers were examined using SEM, FT-IR spectroscopy, and contact angle measurement, respectively. In addition, the antibacterial properties of nanofibers were evaluated quantitatively. The drug release mechanism of samples was investigated which the best-fitted model was recognized Korsmeyer-Peppas model. SEM images of scaffolds demonstrated uniform and bead-free morphology that, with incorporating the 6% of the drug, the diameters of mats were decreased from 398 nm to 303 nm. Moreover, the samples showed proper hydrophilicity and antibacterial properties against a gram-positive (89%) and a gram-negative (98%) bacterium. Finally, the nanofibers are capable of releasing the clindamycin gradually for 6 days.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1063)

Pages:

71-81

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Najafi, A. Gholipour-Kanani, N. Eslahi, S.H. Bahrami, Study on release of cardamom extract as an antibacterial agent from electrospun scaffold based on sodium alginate, The Journal of The Textile Institute 112(9) (2021) 1482-1490.

DOI: 10.1080/00405000.2020.1825164

Google Scholar

[2] S. Baghersad, S.H. Bahrami, M.R. Mohammadi, M.R.M. Mojtahedi, P.B. Milan, Development of biodegradable electrospun gelatin/aloe-vera/poly (ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes, Materials Science and Engineering: C 93 (2018) 367-379.

DOI: 10.1016/j.msec.2018.08.020

Google Scholar

[3] M. Shokrollahi, S.H. Bahrami, M.H. Nazarpak, A. Solouk, Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly (vinyl alcohol) and polycaprolactone as a potential wound dressing, International journal of biological macromolecules 147 (2020) 547-559.

DOI: 10.1016/j.ijbiomac.2020.01.067

Google Scholar

[4] S. Saghebasl, S. Davaran, R. Rahbarghazi, A. Montaseri, R. Salehi, A. Ramazani, Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering, Journal of Biomaterials science, Polymer edition 29(10) (2018) 1185-1206.

DOI: 10.1080/09205063.2018.1447627

Google Scholar

[5] Z.M. Goudarzi, T. Behzad, L. Ghasemi-Mobarakeh, M. Kharaziha, An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering, Polymer 213 (2021) 123313.

DOI: 10.1016/j.polymer.2020.123313

Google Scholar

[6] P.S. Mohamadi, A. Hivechi, H. Bahrami, N. Hemmatinegad, P.B. Milan, Antibacterial and biological properties of coconut oil loaded poly (ε-caprolactone)/gelatin electrospun membranes, Journal of Industrial Textiles (2021) 1528083721991595.

DOI: 10.1177/1528083721991595

Google Scholar

[7] M. Rashtchian, A. Hivechi, S.H. Bahrami, P.B. Milan, S. Simorgh, Fabricating alginate/poly (caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation, Carbohydrate polymers 233 (2020) 115873.

DOI: 10.1016/j.carbpol.2020.115873

Google Scholar

[8] R. Yao, J. He, G. Meng, B. Jiang, F. Wu, Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses, Journal of Biomaterials science, Polymer edition 27(9) (2016) 824-838.

DOI: 10.1080/09205063.2016.1160560

Google Scholar

[9] O. Yördem, M. Papila, Y.Z. Menceloğlu, Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology, Materials & design 29(1) (2008) 34-44.

DOI: 10.1016/j.matdes.2006.12.013

Google Scholar

[10] A.G. Akerdi, S.H. Bahrami, Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: a review, Journal of Environmental Chemical Engineering 7(5) (2019) 103283.

DOI: 10.1016/j.jece.2019.103283

Google Scholar

[11] S.C. Coelho, B.N. Estevinho, F. Rocha, Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review, Food Chemistry 339 (2021) 127850.

DOI: 10.1016/j.foodchem.2020.127850

Google Scholar

[12] H. Souriyan-Reyhani pour, R. Khajavi, M.E. Yazdanshenas, P. Zahedi, M. Mirjalili, Cellulose acetate/poly (vinyl alcohol) hybrid fibrous mat containing tetracycline hydrochloride and phenytoin sodium: Morphology, drug release, antibacterial, and cell culture studies, Journal of Bioactive and Compatible Polymers 33(6) (2018) 597-611.

DOI: 10.1177/0883911518779186

Google Scholar

[13] M. Shokrollahi, S.H. Bahrami, M.H. Nazarpak, A. Solouk, Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications, International Journal of Biological Macromolecules 165 (2020) 902-917.

DOI: 10.1016/j.ijbiomac.2020.09.229

Google Scholar

[14] S. Ramakrishna, An introduction to electrospinning and nanofibers, World Scientific2005.

Google Scholar

[15] Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review, Tissue engineering 12(5) (2006) 1197-1211.

DOI: 10.1089/ten.2006.12.1197

Google Scholar

[16] T. Sangnim, S. Limmatvapirat, J. Nunthanid, P. Sriamornsak, W. Sittikijyothin, S. Wannachaiyasit, K. Huanbutta, Design and characterization of clindamycin-loaded nanofiber patches composed of polyvinyl alcohol and tamarind seed gum and fabricated by electrohydrodynamic atomization, Asian Journal of Pharmaceutical Sciences 13(5) (2018) 450-458.

DOI: 10.1016/j.ajps.2018.01.002

Google Scholar

[17] S. Nadem, H. Ziyadi, M. Hekmati, M. Baghali, Cross-linked poly (vinyl alcohol) nanofibers as drug carrier of clindamycin, Polymer Bulletin 77(11) (2020) 5615-5629.

DOI: 10.1007/s00289-019-03027-z

Google Scholar

[18] S. Sadeghi, J. Nourmohammadi, A. Ghaee, N. Soleimani, Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing, International journal of biological macromolecules 147 (2020) 1239-1247.

DOI: 10.1016/j.ijbiomac.2019.09.251

Google Scholar

[19] A. Hivechi, S.H. Bahrami, R.A. Siegel, Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone, Materials Science and Engineering: C 94 (2019) 929-937.

DOI: 10.1016/j.msec.2018.10.037

Google Scholar

[20] A. Hivechi, S.H. Bahrami, R.A. Siegel, P.B. Milan, M. Amoupour, In vitro and in vivo studies of biaxially electrospun poly (caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications, Cellulose 27(9) (2020) 5179-5196.

DOI: 10.1007/s10570-020-03106-9

Google Scholar

[21] P. Kuppan, S. Sethuraman, U.M. Krishnan, PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: optimization, characterization and cell-matrix interactions, J Biomed Nanotechnol 9(9) (2013) 1540-55.

DOI: 10.1166/jbn.2013.1653

Google Scholar

[22] M. Heidari, S.H. Bahrami, M. Ranjbar-Mohammadi, P. Milan, Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering, Materials Science and Engineering: C 103 (2019) 109768.

DOI: 10.1016/j.msec.2019.109768

Google Scholar

[23] M. Dedić, E. Bečić, B. Imamović, N. Žiga, Determination of clindamycin hydrochloride content in 1% clindamycin lotion, Bull. Chem. Technol. Bosnia Herzeg 50 (2018) 49-54.

Google Scholar

[24] N.R. Tanha, M. Nouri, Core-shell Nanofibers of Silk Fibroin/Polycaprolactone-Clindamycin: Study on Nanofibers Structure and Controlled Release Behavior, Polymer Science, Series A 61(1) (2019) 85-95.

DOI: 10.1134/s0965545x19010085

Google Scholar

[25] F.R. Boroojen, S. Mashayekhan, H.-A. Abbaszadeh, The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold, Iranian journal of pharmaceutical research: IJPR 18(1) (2019) 111.

Google Scholar

[26] V. Leung, F. Ko, Biomedical applications of nanofibers, Polymers for Advanced Technologies 22(3) (2011) 350-365.

DOI: 10.1002/pat.1813

Google Scholar

[27] M. Castillo-Ortega, I. López-Peña, D. Rodríguez-Félix, T. Del Castillo-Castro, J. Encinas-Encinas, H. Santacruz-Ortega, J. Cauich-Rodríguez, J. Quiroz-Castillo, L. Chan-Chan, I. Lagarda-Diaz, Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering, Polymer Bulletin (2021) 1-19.

DOI: 10.1007/s00289-021-03734-6

Google Scholar

[28] S. Nadem, H. Ziyadi, M. Hekmati, M. Baghali, Cross-linked poly (vinyl alcohol) nanofibers as drug carrier of clindamycin, Polymer Bulletin (2019) 1-15.

DOI: 10.1007/s00289-019-03027-z

Google Scholar