[1]
A. Salman, F.A. Metwally, M. Elbisi, G.A.M. Emara, Applications of nanotechnology and advancements in smart wearable textiles: An overview, Egypt. J. Chem. 63 (2020) 2177–2184.
DOI: 10.21608/ejchem.2019.18223.2112
Google Scholar
[2]
C.I. Idumah, Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19, J. Text. Inst. 0 (2020) 1–21.
Google Scholar
[3]
S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Rehman, A. Javid, K. Iqbal, A. Basit, H. Aziz, Functional finishing and coloration of textiles with nanomaterials, Color. Technol. 134 (2018) 327–346.
DOI: 10.1111/cote.12344
Google Scholar
[4]
B. Mehravani, A.I. Ribeiro, A. Zille, Gold nanoparticles synthesis and antimicrobial effect on fibrous materials, Nanomaterials. 11 (2021) 1067.
DOI: 10.3390/nano11051067
Google Scholar
[5]
P. Sharma, S. Pant, P. Poonia, S. Kumari, V. Dave, S. Sharma, Green Synthesis of Colloidal Copper Nanoparticles Capped with Tinospora cordifolia and Its Application in Catalytic Degradation in Textile Dye: An Ecologically Sound Approach, J. Inorg. Organomet. Polym. Mater. 28 (2018) 2463–2472.
DOI: 10.1007/s10904-018-0933-5
Google Scholar
[6]
A.I. Ribeiro, M. Modic, U. Cvelbar, G. Dinescu, B. Mitu, A. Nikiforov, C. Leys, I. Kuchakova, M. De Vrieze, H.P. Felgueiras, A.P. Souto, A. Zille, Effect of dispersion solvent on the deposition of PVP-silver nanoparticles onto DBD plasma-treated polyamide 6,6 fabric and its antimicrobial efficiency, Nanomaterials. 10 (2020) 607.
DOI: 10.3390/nano10040607
Google Scholar
[7]
S. Anita, T. Ramachandran, R. Rajendran, cv Koushik, M. Mahalakshmi, A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric, Text. Res. J. 81 (2011) 1081–1088.
DOI: 10.1177/0040517510397577
Google Scholar
[8]
M.C. Sportelli, R.A. Picca, R. Ronco, E. Bonerba, G. Tantillo, M. Pollini, A. Sannino, A. Valentini, T.R.I. Cataldi, N. Cioffi, Investigation of industrial polyurethane foams modified with antimicrobial copper nanoparticles, Materials (Basel). 9 (2016) 1–13.
DOI: 10.3390/ma9070544
Google Scholar
[9]
D. Lai, T. Liu, G. Jiang, W. Chen, Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite, J. Appl. Polym. Sci. 128 (2013) 1443–1449.
DOI: 10.1002/app.38109
Google Scholar
[10]
U. Kathad, h p Gajera, Synthesis of copper nanoparticles by two different methods and size comparision, Int. J. Pharma Bio Sci. 5 (2014) 533–540.
Google Scholar
[11]
T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011).
DOI: 10.1088/2043-6262/2/1/015009
Google Scholar
[12]
S. Jain, A. Jain, P. Kachhawah, V. Devra, Synthesis and size control of copper nanoparticles and their catalytic application, Trans. Nonferrous Met. Soc. China English Ed. 25 (2015) 3995–4000.
DOI: 10.1016/s1003-6326(15)64048-1
Google Scholar
[13]
M.I. Din, R. Rehan, Synthesis, Characterization, and Applications of Copper Nanoparticles, Anal. Lett. 50 (2017) 50–62.
Google Scholar
[14]
G. Granata, T. Yamaoka, F. Pagnanelli, A. Fuwa, Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability, J. Nanoparticle Res. 18 (2016) 1–12.
DOI: 10.1007/s11051-016-3438-6
Google Scholar
[15]
A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro, S. Paoletti, Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity, Biomacromolecules. 10 (2009) 1429–1435.
DOI: 10.1021/bm900039x
Google Scholar
[16]
E. Hadipour-Goudarzi, M. Montazer, M. Latifi, A.A.G. Aghaji, Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver, Carbohydr. Polym. 113 (2014) 231–239.
DOI: 10.1016/j.carbpol.2014.06.082
Google Scholar
[17]
A.M. Muthukrishnan, Green Synthesis of Copper-Chitosan Nanoparticles and Study of its Antibacterial Activity, J. Nanomed. Nanotechnol. 06 (2015) 1–5.
DOI: 10.4172/2157-7439.1000251
Google Scholar
[18]
A. Bashiri, M. Montazer, One-step fabrication of fatty acids / nano copper / polyester shape-stable composite phase change material for thermal energy management and storage, Appl. Energy. 228 (2018) 1911–(1920).
DOI: 10.1016/j.apenergy.2018.07.041
Google Scholar
[19]
A. Bashiri, M. Montazer, M. Mahmoudi, Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in - situ synthesis of cauli fl ower-like CuO nanoparticles, J. Photochem. Photobiol. B Biol. 176 (2017) 100–111.
DOI: 10.1016/j.jphotobiol.2017.09.021
Google Scholar
[20]
A.B. Rezaie, M. Montazer, Amidohydroxylated polyester with biophotoactivity along with retarding alkali hydrolysis through in situ synthesis of Cu / Cu 2 O nanoparticles using diethanolamine, J. Appl. Polym. Sci. 44856 (2017) 1–15.
DOI: 10.1002/app.44856
Google Scholar
[21]
M.M. Abdul-Bari, R.H. McQueen, H. Nguyen, W. V. Wismer, A.P. de la Mata, J.J. Harynuk, Synthetic Clothing and the Problem With Odor: Comparison of Nylon and Polyester Fabrics, Cloth. Text. Res. J. 36 (2018) 251–266.
DOI: 10.1177/0887302x18772099
Google Scholar
[22]
A. Majumdar, B.S. Butola, S. Thakur, Development and performance optimization of knitted antibacterial materials using polyester-silver nanocomposite fibres, Mater. Sci. Eng. C. 54 (2015) 26–31.
DOI: 10.1016/j.msec.2015.04.026
Google Scholar
[23]
M.S. Usman, N.A. Ibrahim, K. Shameli, N. Zainuddin, W.M.Z.W. Yunus, Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods, Molecules. 17 (2012) 14928–14936.
DOI: 10.3390/molecules171214928
Google Scholar
[24]
S. Pradhan, R. Shrestha, K. Bhandari, Effect of Various Parameters on Bio-Synthesis of Copper Nanoparticles Using Citrus Medica Linn (Lemon) Extract and Its Antibacterial Activity, Amrit Resarch J. 1 (2020) 51–58.
DOI: 10.3126/arj.v1i1.32454
Google Scholar
[25]
M. Biçer, I. Şişman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279–284.
DOI: 10.1016/j.powtec.2009.11.022
Google Scholar
[26]
Y. Suresh, S. Annapurna, a K. Singh, G. Bhikshamaiah, Green Synthesis and Characterization of Tea Decoction Stabilized Copper Nanoparticles, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2014) 11265–11270.
Google Scholar
[27]
E. Tabesh, H.R. Salimijazi, M. Kharaziha, M. Mahmoudi, M. Hejazi, Development of an in-situ chitosan‑copper nanoparticle coating by electrophoretic deposition, Surf. Coatings Technol. 364 (2019) 239–247.
DOI: 10.1016/j.surfcoat.2019.02.040
Google Scholar
[28]
G.R. Domínguez, M.C. Rodríguez-argüelles, N. Gonzalez Ballesteors, G. Rodriguez Dominguez, M. Campanini, L. Nasi, I. Vazquez, C. Sieiro, Broad-Spectrumm Antimicrobial Activity of Silver Nanoparticles in Different Types of Chitosan Matrices, Chem. J. 1 (2015) 165–171.
Google Scholar
[29]
S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C. 44 (2014) 278–284.
DOI: 10.1016/j.msec.2014.08.031
Google Scholar
[30]
C. keong Lim, A. sukari Halim, Biomedical-Grade Chitosan in Wound Management and Its Biocompatibility In Vitro, in: M.E. Magdy (Ed.), Biopolymers, InTech, 2010: p.19–33.
DOI: 10.5772/10256
Google Scholar