Development of Antimicrobial Polyester Fabric by a Green In Situ Synthesis of Copper Nanoparticles Mediated from Chitosan and Ascorbic Acid

Article Preview

Abstract:

The antimicrobial functionalization of polyester fabrics (PES) is useful to provide protection from pathogens and reducing odors. Copper nanoparticles (CuNPs) have been widely applied due to their antimicrobial properties and higher biocompatibility compared with other metal nanoparticles. However, the inherent instability of CuNPs under atmospheric conditions and the use of harmful chemicals during their synthesis limit their use. Thus, the development of efficient and safe methods for the CuNPs synthesis and their stabilization onto surfaces present high interest. In this work, PES was functionalized with CuNPs via in situ synthesis using cost-effective and safe chemicals in the presence and absence of chitosan. In sample without chitosan, the CuNPs showed a suitable stabilization onto PES due to the doubled stabilization of ascorbic acid (AA) and cetyl trimethyl ammonium bromide (CTAB). In sample with chitosan, less CuNPs were retained by the PES but also less CuNPs agglomeration was observed. Both samples presented excellent antibacterial effect against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as well as laundering durability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1063)

Pages:

83-90

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Salman, F.A. Metwally, M. Elbisi, G.A.M. Emara, Applications of nanotechnology and advancements in smart wearable textiles: An overview, Egypt. J. Chem. 63 (2020) 2177–2184.

DOI: 10.21608/ejchem.2019.18223.2112

Google Scholar

[2] C.I. Idumah, Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19, J. Text. Inst. 0 (2020) 1–21.

Google Scholar

[3] S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, A. Rehman, A. Javid, K. Iqbal, A. Basit, H. Aziz, Functional finishing and coloration of textiles with nanomaterials, Color. Technol. 134 (2018) 327–346.

DOI: 10.1111/cote.12344

Google Scholar

[4] B. Mehravani, A.I. Ribeiro, A. Zille, Gold nanoparticles synthesis and antimicrobial effect on fibrous materials, Nanomaterials. 11 (2021) 1067.

DOI: 10.3390/nano11051067

Google Scholar

[5] P. Sharma, S. Pant, P. Poonia, S. Kumari, V. Dave, S. Sharma, Green Synthesis of Colloidal Copper Nanoparticles Capped with Tinospora cordifolia and Its Application in Catalytic Degradation in Textile Dye: An Ecologically Sound Approach, J. Inorg. Organomet. Polym. Mater. 28 (2018) 2463–2472.

DOI: 10.1007/s10904-018-0933-5

Google Scholar

[6] A.I. Ribeiro, M. Modic, U. Cvelbar, G. Dinescu, B. Mitu, A. Nikiforov, C. Leys, I. Kuchakova, M. De Vrieze, H.P. Felgueiras, A.P. Souto, A. Zille, Effect of dispersion solvent on the deposition of PVP-silver nanoparticles onto DBD plasma-treated polyamide 6,6 fabric and its antimicrobial efficiency, Nanomaterials. 10 (2020) 607.

DOI: 10.3390/nano10040607

Google Scholar

[7] S. Anita, T. Ramachandran, R. Rajendran, cv Koushik, M. Mahalakshmi, A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric, Text. Res. J. 81 (2011) 1081–1088.

DOI: 10.1177/0040517510397577

Google Scholar

[8] M.C. Sportelli, R.A. Picca, R. Ronco, E. Bonerba, G. Tantillo, M. Pollini, A. Sannino, A. Valentini, T.R.I. Cataldi, N. Cioffi, Investigation of industrial polyurethane foams modified with antimicrobial copper nanoparticles, Materials (Basel). 9 (2016) 1–13.

DOI: 10.3390/ma9070544

Google Scholar

[9] D. Lai, T. Liu, G. Jiang, W. Chen, Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite, J. Appl. Polym. Sci. 128 (2013) 1443–1449.

DOI: 10.1002/app.38109

Google Scholar

[10] U. Kathad, h p Gajera, Synthesis of copper nanoparticles by two different methods and size comparision, Int. J. Pharma Bio Sci. 5 (2014) 533–540.

Google Scholar

[11] T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011).

DOI: 10.1088/2043-6262/2/1/015009

Google Scholar

[12] S. Jain, A. Jain, P. Kachhawah, V. Devra, Synthesis and size control of copper nanoparticles and their catalytic application, Trans. Nonferrous Met. Soc. China English Ed. 25 (2015) 3995–4000.

DOI: 10.1016/s1003-6326(15)64048-1

Google Scholar

[13] M.I. Din, R. Rehan, Synthesis, Characterization, and Applications of Copper Nanoparticles, Anal. Lett. 50 (2017) 50–62.

Google Scholar

[14] G. Granata, T. Yamaoka, F. Pagnanelli, A. Fuwa, Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability, J. Nanoparticle Res. 18 (2016) 1–12.

DOI: 10.1007/s11051-016-3438-6

Google Scholar

[15] A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro, S. Paoletti, Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity, Biomacromolecules. 10 (2009) 1429–1435.

DOI: 10.1021/bm900039x

Google Scholar

[16] E. Hadipour-Goudarzi, M. Montazer, M. Latifi, A.A.G. Aghaji, Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver, Carbohydr. Polym. 113 (2014) 231–239.

DOI: 10.1016/j.carbpol.2014.06.082

Google Scholar

[17] A.M. Muthukrishnan, Green Synthesis of Copper-Chitosan Nanoparticles and Study of its Antibacterial Activity, J. Nanomed. Nanotechnol. 06 (2015) 1–5.

DOI: 10.4172/2157-7439.1000251

Google Scholar

[18] A. Bashiri, M. Montazer, One-step fabrication of fatty acids / nano copper / polyester shape-stable composite phase change material for thermal energy management and storage, Appl. Energy. 228 (2018) 1911–(1920).

DOI: 10.1016/j.apenergy.2018.07.041

Google Scholar

[19] A. Bashiri, M. Montazer, M. Mahmoudi, Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in - situ synthesis of cauli fl ower-like CuO nanoparticles, J. Photochem. Photobiol. B Biol. 176 (2017) 100–111.

DOI: 10.1016/j.jphotobiol.2017.09.021

Google Scholar

[20] A.B. Rezaie, M. Montazer, Amidohydroxylated polyester with biophotoactivity along with retarding alkali hydrolysis through in situ synthesis of Cu / Cu 2 O nanoparticles using diethanolamine, J. Appl. Polym. Sci. 44856 (2017) 1–15.

DOI: 10.1002/app.44856

Google Scholar

[21] M.M. Abdul-Bari, R.H. McQueen, H. Nguyen, W. V. Wismer, A.P. de la Mata, J.J. Harynuk, Synthetic Clothing and the Problem With Odor: Comparison of Nylon and Polyester Fabrics, Cloth. Text. Res. J. 36 (2018) 251–266.

DOI: 10.1177/0887302x18772099

Google Scholar

[22] A. Majumdar, B.S. Butola, S. Thakur, Development and performance optimization of knitted antibacterial materials using polyester-silver nanocomposite fibres, Mater. Sci. Eng. C. 54 (2015) 26–31.

DOI: 10.1016/j.msec.2015.04.026

Google Scholar

[23] M.S. Usman, N.A. Ibrahim, K. Shameli, N. Zainuddin, W.M.Z.W. Yunus, Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods, Molecules. 17 (2012) 14928–14936.

DOI: 10.3390/molecules171214928

Google Scholar

[24] S. Pradhan, R. Shrestha, K. Bhandari, Effect of Various Parameters on Bio-Synthesis of Copper Nanoparticles Using Citrus Medica Linn (Lemon) Extract and Its Antibacterial Activity, Amrit Resarch J. 1 (2020) 51–58.

DOI: 10.3126/arj.v1i1.32454

Google Scholar

[25] M. Biçer, I. Şişman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279–284.

DOI: 10.1016/j.powtec.2009.11.022

Google Scholar

[26] Y. Suresh, S. Annapurna, a K. Singh, G. Bhikshamaiah, Green Synthesis and Characterization of Tea Decoction Stabilized Copper Nanoparticles, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2014) 11265–11270.

Google Scholar

[27] E. Tabesh, H.R. Salimijazi, M. Kharaziha, M. Mahmoudi, M. Hejazi, Development of an in-situ chitosan‑copper nanoparticle coating by electrophoretic deposition, Surf. Coatings Technol. 364 (2019) 239–247.

DOI: 10.1016/j.surfcoat.2019.02.040

Google Scholar

[28] G.R. Domínguez, M.C. Rodríguez-argüelles, N. Gonzalez Ballesteors, G. Rodriguez Dominguez, M. Campanini, L. Nasi, I. Vazquez, C. Sieiro, Broad-Spectrumm Antimicrobial Activity of Silver Nanoparticles in Different Types of Chitosan Matrices, Chem. J. 1 (2015) 165–171.

Google Scholar

[29] S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C. 44 (2014) 278–284.

DOI: 10.1016/j.msec.2014.08.031

Google Scholar

[30] C. keong Lim, A. sukari Halim, Biomedical-Grade Chitosan in Wound Management and Its Biocompatibility In Vitro, in: M.E. Magdy (Ed.), Biopolymers, InTech, 2010: p.19–33.

DOI: 10.5772/10256

Google Scholar