[1]
K. A. Mohammed , Shireen N. Alebadi ,K. M. Ziadan , A. S. AL-Kabbi, A. J. Alrubaie , Hussein M. Hussein Organic-inorganic hybrid material: synthesis, characterization for solar cell application, Journal of Ovonic Research Vol. 18, No. 1, January - February 2022, p.75 – 82.
DOI: 10.15251/jor.2022.181.75
Google Scholar
[2]
Ahilfi, D. N., Alkabbi, A. S., Mohammed, K. A., & Ziadan, K. M. (2020, November). Fabrication and characterization of polyaniline/CdSe device for applications in nano structured solar cells. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 7, p.072069). IOP Publishing.
DOI: 10.1088/1757-899x/928/7/072069
Google Scholar
[3]
Thyab, R. M., & Mohammed, K. A. (2022, January). Preparation and characterization of ZnO: Co nanoparticles as DSSC photocathode. In AIP Conference Proceedings (Vol. 2386, No. 1, p.030028). AIP Publishing LLC.
DOI: 10.1063/5.0066813
Google Scholar
[4]
Mohammed, K. A., Ziadan, K. M., Al-Kabbi, A. S., Abdulzahr, D. S., Judi, H. K., & Hussein, H. M. (2021). The Role of Formic Acid as Secondary Dopant and Solvent for Poly (O-Toluidine) Intrinsically Doped with Camphor Sulfonic Acid. In Materials Science Forum (Vol. 1039, pp.260-268). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/msf.1039.260
Google Scholar
[5]
Rahman, K. H., & Kar, A. K. (2020). Titanium-di-oxide (TiO2) concentration-dependent optical and morphological properties of PAni-TiO2 nanocomposite. Materials Science in Semiconductor Processing, 105, 104745.
DOI: 10.1016/j.mssp.2019.104745
Google Scholar
[6]
S.G. Pawar, S.L. Patil, M.A. Chougule, A.T. Mane, D.M. Jundale, V.B. Patil, Synthesis and characterization of polyaniline:TiO2 nanocomposites, Int. J. Polym. Mater. 10 (59) (2010) 777–785.
DOI: 10.1080/00914037.2010.483217
Google Scholar
[7]
H. Xia, Q. Wang, Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/ nanocrystalline titanium oxide composites, Chem. Mater. 5 (14) (2002) 2158–2165.
DOI: 10.1021/cm0109591
Google Scholar
[8]
D.C. Schnitzler, M.S. Meruvia, I.A. Hümmelgen, A.J.Z.G. Zarbin, Organic/Inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline, J. Brazil. Chem. Soc. 3 (15) (2004) 378–384.
DOI: 10.1590/s0103-50532004000300007
Google Scholar
[9]
Ansari, M. O., & Mohammad, F. (2011). Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline: titanium dioxide (pTSA/Pani: TiO2) nanocomposites. Sensors and Actuators B: Chemical, 157(1), 122-129.
DOI: 10.1016/j.snb.2011.03.036
Google Scholar
[10]
Xiong S, Wang Q, Xia H (2004) Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 146:37–42.
DOI: 10.1016/j.synthmet.2004.06.017
Google Scholar
[11]
Chen F, An W, Li Y et al (2018) Fabricating 3D porous PANI/TiO2–graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA. Appl Surf Sci 427:123–132.
DOI: 10.1016/j.apsusc.2017.08.146
Google Scholar
[12]
Jangid, N. K., Jadoun, S., Yadav, A., Srivastava, M., & Kaur, N. (2021). Polyaniline-TiO2-based photocatalysts for dyes degradation. Polymer Bulletin, 78(8), 4743-4777.
DOI: 10.1007/s00289-020-03318-w
Google Scholar
[13]
Kalaiarasi, J., Balakrishnan, D., Al-Keridis, L. A., Al-mekhlafi, F. A., Farrag, M. A., Kanisha, C. C., ... & Pragathiswaran, C. (2022). Sensing and antimicrobial activity of polyaniline doped with TiO2 nanocomposite synthesis and characterization. Journal of King Saud University-Science, 101824.
DOI: 10.1016/j.jksus.2022.101824
Google Scholar
[14]
Taufiq, A., Nuroni, M. S., Hidayat, N., Subadra, S. T., & Hidayat, A. (2020). Effect of Polyaniline on Structural and Optical Characteristics of Fe3O4 and TiO2 Nanoparticles. In Key Engineering Materials (Vol. 851, pp.9-15). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/kem.851.9
Google Scholar
[15]
Andreas, R., & Oktaviani, A. (2022). Synthesis, Characterization, and Activity of The Photocatalyst Polyaniline (PANI)/TiO2 in Degrading Rhodamine B Dye. Science and Technology Indonesia, 7(1), 126-131.
DOI: 10.26554/sti.2022.7.1.126-131
Google Scholar
[16]
Tan, Y., Chen, T., Zheng, S., Sun, Z., & Li, C. (2021). Adsorptive and photocatalytic behaviour of PANI/TiO2/metakaolin composites for the removal of xanthate from aqueous solution. Minerals Engineering, 171, 107129.
DOI: 10.1016/j.mineng.2021.107129
Google Scholar
[17]
Chen, G., Yuan, Y., Zhang, H., Lang, M., & Cheng, Y. (2021, December). Design of high-performance ternary ammonia gas sensors based on Au NPs hybrid PANI-TiO2 nanocomposites on flexible polyimide substrate. In 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Intelligent Sensing Technologies and Applications (Vol. 12075, pp.90-103). SPIE.
DOI: 10.1117/12.2604881
Google Scholar
[18]
Kumar, S. A., Vyas, R., Kumar, J. P., Chand, U., & Kumar, J. V. (2019). Optical properties of in-situ chemically synthesized PANI-TiO2 nanocomposites. Journal of nano-and electronic physics, (11, no. 2), 02012-1.
Google Scholar
[19]
Rahman, K. H., & Kar, A. K. (2019). Structural and optical properties of ex-situ polymerized PAni-TiO2 nanocomposite. Materials Today: Proceedings, 18, 1067-1071.
DOI: 10.1016/j.matpr.2019.06.565
Google Scholar
[20]
Diantoro, M., Masrul, M. Z., & Taufiq, A. (2018, April). Effect of TiO2 nanoparticles on conductivity and thermal stability of PANI-TiO2/glass composite film. In Journal of Physics: Conference Series (Vol. 1011, No. 1, p.012065). IOP Publishing.
DOI: 10.1088/1742-6596/1011/1/012065
Google Scholar