Critical Review on 3D Scaffolds Materials

Article Preview

Abstract:

New strategies have been developed to design advanced functional biomimetic structures. This paper reviewed the benefits and drawbacks of biomaterials that are used to manufacture 3D scaffolds in tissue engineering. In this paper, latest technological methods, scaffold requirements in development of single form, composite form and cell-laden based scaffolds, classification on the basis of geometry and main material is explained elaborately. These scaffolds promote different molecules can be delivered to tissue and stimulate cell growth. These cells have a therapeutic effect. The paper discusses the various 3D bio printed structures and the difficulties they encounter. The impacts of biologically functionalized biomaterials on soft and hard tissue engineering in vitro and in vivo are discussed. The paper summarized the future prospects for bioactive scaffolds, that can be used in clinical therapy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

129-143

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Chocholata, V. Kulda, and V. Babuska, Fabrication of scaffolds for bone-tissue regeneration, Mater. (Basel) 12 2019 2040568.

DOI: 10.3390/ma12040568

Google Scholar

[2] S. J. Gobbi, G. Reinke, V. J. Gobbi, Y. Rocha, T. P. Sousa, M. M. Coutinho, Biomaterial: Concepts and Basics Properties, Eur. Int. J. Sci. Technol. 9 (2020) 23–42.

Google Scholar

[3] T. Grover, A. Pandey, S.T. Kumari, A. Awasthi, B. Singh, P. Dixit, P. Singhal, K. K. Saxena, Role of titanium in bio implants and additive manufacturing: An overview, Mater. Today: Proc. 26 (2020) 3071-3080.

DOI: 10.1016/j.matpr.2020.02.636

Google Scholar

[4] Z. X. Cui, Functionalization of 3-d porous thermoplastic polyurethane scaffolds by two-stage polydopamine/hydroxyapatite composite nanoparticles, Express Polym. Lett. 14 (2020) 794–807.

DOI: 10.3144/expresspolymlett.2020.66

Google Scholar

[5] P. Maturavongsadit, Biodegradable polymeric solid implants for ultra-long-acting delivery of single or multiple antiretroviral drugs, Int. J. Pharm. 605 (2021) 120844.

DOI: 10.1016/j.ijpharm.2021.120844

Google Scholar

[6] R. Y. K. Chang, Y. Okamoto, S. Morales, E. Kutter, H. K. Chan, Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages, Int. J. Pharm. 605 (2021).

DOI: 10.1016/j.ijpharm.2021.120850

Google Scholar

[7] C. Zlomke, M. Barth, K. Mäder, Polymer degradation induced drug precipitation in PLGA implants – Why less is sometimes more, Eur. J. Pharm. Biopharm. 139 (2019) 142–152.

DOI: 10.1016/j.ejpb.2019.03.016

Google Scholar

[8] H. Mohammadi, N. Muhamad, A. B. Sulong, M. Ahmadipour, Recent advances on biofunctionalization of metallic substrate using ceramic coating: How far are we from clinically stable implant?, J. Taiwan Inst. Chem. Eng. 118 (2021) 254–270.

DOI: 10.1016/j.jtice.2021.01.013

Google Scholar

[9] T. Aydemir, J. I. Pastore, E. Jimenez-Pique, J. J. Roa, A. R. Boccaccini, J. Ballarre, Morphological and mechanical characterization of chitosan/gelatin/silica-gentamicin/bioactive glass coatings on orthopaedic metallic implant materials, Thin Solid Films 732 (2021) 138780.

DOI: 10.1016/j.tsf.2021.138780

Google Scholar

[10] C. H. Lin, Y. S. Chen, W. L. Huang, T. C. Hung, T. C. Wen, Hydroxyapatite formation with the interface of chitin and chitosan, J. Taiwan Inst. Chem. Eng. 118 (2021) 294–300.

DOI: 10.1016/j.jtice.2021.01.004

Google Scholar

[11] L. Aissani, Effect of carbon content on structural, mechanical and tribological properties of Cr-V-C-N coatings, Thin Solid Films 732 (2021).

DOI: 10.1016/j.tsf.2021.138782

Google Scholar

[12] S. Hoa, B. Reddy, D. Rosca, Development of omega stiffeners using 4D printing of composites, Compos. Struct. 272 (2021).

DOI: 10.1016/j.compstruct.2021.114264

Google Scholar

[13] A. Awasthi, K. K. Saxena, V. Arun, Sustainable and smart metal forming manufacturing process, Mater. Today Proc. 44 (2021) 2069–(2079).

DOI: 10.1016/j.matpr.2020.12.177

Google Scholar

[14] S. Shrestha, B. K. Shrestha, S. W. Ko, R. Kandel, C. H. Park, C. S. Kim, Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration, Carbohydr. Polym. 251 (2020) 117035.

DOI: 10.1016/j.carbpol.2020.117035

Google Scholar

[15] A. Awasthi, K. K. Saxena, R. K. Dwivedi, An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants, Mater. Today Proc. 44 (2021) 2061–(2068).

DOI: 10.1016/j.matpr.2020.12.176

Google Scholar

[16] M. Chikhi, Effective thermal conductivity of porous biomaterials: Numerical investigation," J. Build. Eng. 32 (2020) 101763.

DOI: 10.1016/j.jobe.2020.101763

Google Scholar

[17] G. Liu, Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials, Engineering 6 (2020) 1232–1243.

DOI: 10.1016/j.eng.2020.04.015

Google Scholar

[18] R. Donate, M. Monzón, M. E. Alemán-Domínguez, Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties, E-Poly. 20 (2020) 571–599.

DOI: 10.1515/epoly-2020-0046

Google Scholar

[19] A. Eltom, G. Zhong, A. Muhammad, Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review, Adv. Mater. Sci. Eng. 2019 (2019) 3429527.

DOI: 10.1155/2019/3429527

Google Scholar

[20] K. K. Saxena, A. Awasthi, Novel Additive Manufacturing Processes and Techniques in Industry 4.0, Res. Int. Indus. 4.0 Buss. Manuf. 4 (2020) 435-459.

Google Scholar

[21] M. P. Nikolova, M. S. Chavali, Recent advances in biomaterials for 3D scaffolds: A review, Bioact. Mater. 4 (2019) 271–292.

DOI: 10.1016/j.bioactmat.2019.10.005

Google Scholar

[22] S. Toghyani, M. Khodaei, Fabrication and characterization of magnesium scaffold using different processing parameters, Mater. Res. Express. 5 (2018) (2053).

DOI: 10.1088/2053-1591/aab6db

Google Scholar

[23] A. Pandey, A. Awasthi, K. K. Saxena, Metallic implants with properties and latest production techniques: a review, Adv. Mater. Process Technol. 6 (2020) 405-440.

Google Scholar

[24] C. Zlomke, M. Barth, K. Mäder, Polymer degradation induced drug precipitation in PLGA implants – Why less is sometimes more, Eur. J. Pharm. Biopharm. 139 (2019) 142–152.

DOI: 10.1016/j.ejpb.2019.03.016

Google Scholar

[25] D. Lahiri, S. Ghosh, A. Agarwal, Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review, Mater. Sci. Eng. C vol. 32 (2012) 1727–1758.

DOI: 10.1016/j.msec.2012.05.010

Google Scholar

[26] T. Grover, A. Pandey, S.T. Kumari, A. Awasthi, B. Singh, P. Dixit, P. Singhal, K. K. Saxena, Role of titanium in bio implants and additive manufacturing: An overview, Mater. Today: Proc. 26 (2020) 3071-3080.

DOI: 10.1016/j.matpr.2020.02.636

Google Scholar

[27] M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Mater. Sci. Eng. C vol. 102 (2018) 844–862.

DOI: 10.1016/j.msec.2019.04.064

Google Scholar

[28] C. Vila-Parrondo, C. García-Astrain, L. M. Liz-Marzán, Colloidal systems toward 3D cell culture scaffolds, Adv. Colloid Interface Sci. 283 (2020) 102237.

DOI: 10.1016/j.cis.2020.102237

Google Scholar

[29] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress Mater. Sci.. 54 (2009 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[30] W. Q. Toh, X. Tan, A. Bhowmik, E. Liu, S. B. Tor, Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review, Mater. (Basel). 11 (2017) 30.

DOI: 10.3390/ma11010030

Google Scholar

[31] C. Dini, R. C. Costa, C. Sukotjo, C. G. Takoudis, M. T. Mathew, V. A. R. Barão, Progression of Bio-Tribocorrosion in Implant Dentistry, Front. Mech. Eng. 6 (2020) 1–14.

DOI: 10.3389/fmech.2020.00001

Google Scholar

[32] Y. Su, Bioinspired surface functionalization of metallic biomaterials, J. Mech. Behav. Biomed. Mater. 77 (2017) 90–105.

Google Scholar

[33] H. Ahirwar, Y. Zhou, C. Mahapatra, S. Ramakrishna, P. Kumar, H. S. Nanda, Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials, Coat. 10 (2020) 264.

DOI: 10.3390/coatings10030264

Google Scholar

[34] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res. 13 (1998) 94–117.

DOI: 10.1557/jmr.1998.0015

Google Scholar

[35] G. Calabrese, A new Ag-nanostructured hydroxyapatite porous scaffold: Antibacterial effect and cytotoxicity study, Mater. Sci. Eng. C 118 (2020) 111394.

Google Scholar

[36] J. Yang, Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: Mechanical property evaluation and porous structure characterization, Mater. Charact. 170 (2020) 110694.

DOI: 10.1016/j.matchar.2020.110694

Google Scholar

[37] S. A. S. Nasrollah, N. Najmoddin, M. Mohammadi, A. Fayyaz, B. Nyström, Three dimensional polyurethane/ hydroxyapatite bioactive scaffolds: The role of hydroxyapatite on pore generation, J. Appl. Polym. Sci. 138 (2020) 1–14.

DOI: 10.1002/app.50017

Google Scholar

[38] F. Moussy, Biomaterials for the developing world, J. Biomed. Mater. Res. - Part A 94 (2010) 1001–1003.

Google Scholar

[39] M. H. Mousa, Y. Dong, I. J. Davies, Recent advances in bionanocomposites: Preparation, properties, and applications, Int. J. Polym. Mater. Polym. Biomater. 65 (2016) 225–254.

Google Scholar

[40] D. Lahiri, S. Ghosh, A. Agarwal, Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review, Mater. Sci. Eng. C 32 (2012) 1727–1758.

DOI: 10.1016/j.msec.2012.05.010

Google Scholar

[41] C. Ma, Preparation of oriented collagen fiber scaffolds and its application in bone tissue engineering, Appl. Mater. Today 22 (2021) 100902.

DOI: 10.1016/j.apmt.2020.100902

Google Scholar

[42] T. Lei, Biomimetic strategies for tendon/ligament-to-bone interface regeneration, Bioact. Mater. 6 (2021) 2491–2510.

Google Scholar

[43] G. Calabrese, A new Ag-nanostructured hydroxyapatite porous scaffold: Antibacterial effect and cytotoxicity study, Mater. Sci. Eng. C 118 (2020)111394.

Google Scholar

[44] J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, X. Wang, The thermal and mechanical properties of a polyurethane / multi-walled carbon nanotube composite, Adv. Mater. Sci. 44 (2006) 2701–2707.

DOI: 10.1016/j.carbon.2006.04.005

Google Scholar

[45] J. Sethi, E. Sarlin, S. S. Meysami, R. Suihkonen, J. Vuorinen, The effect of multi-wall carbon nanotube mor- phology on electrical and mechanical proper- ties of polyurethane nanocomposites, Compos. Part A 4 (2017) 1016.

DOI: 10.1016/j.compositesa.2017.08.014

Google Scholar

[46] N. Gopal, Y. Chae, H. Jin, J. W. Cho, SCIENCE AND Influence of carbon nanotubes and polypyrrole on the thermal , mechanical and electroactive shape-memory properties of polyurethane nanocomposites, Adv. Mater. Sci. 67 (2007) 1920–(1929).

DOI: 10.1016/j.compscitech.2006.10.013

Google Scholar

[47] H. Characterized, Polyurethane Composite Sca ff olds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition, Compos. Part A 5 (2020) 1-18.

DOI: 10.3390/polym12020410

Google Scholar

[48] P. Arnaldi, F. Carosio, D. Di Lisa, L. Muzzi, O. Monticelli, L. Pastorino, Assembly of chitosan-graphite oxide nanoplatelets core shell microparticles for advanced 3D scaffolds supporting neuronal networks growth, Colloids Surfaces B Biointerfaces 196 (2020) 111295.

DOI: 10.1016/j.colsurfb.2020.111295

Google Scholar

[49] W. Q. Toh, X. Tan, A. Bhowmik, E. Liu, S. B. Tor, Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review, Mater. (Basel). 11 (2017) 30.

DOI: 10.3390/ma11010030

Google Scholar

[50] C. Mu, Modi fi cation of carbon nanotubes by a novel biomimetic approach towards the enhancement of the mechanical properties of polyurethane, Polymer (Guildf). 92 (2016) 231–238.

DOI: 10.1016/j.polymer.2016.03.085

Google Scholar

[51] H. M. Xin, J. Max, T. M. C. X. Peng, L. Turng, Morphology , mechanical properties , and mineralization of rigid thermoplastic polyurethane / hydroxyapatite scaffolds for bone tissue applications : effects of fabrication approaches and hydroxyapatite size, Compos. Part A 3 (2014) 2324–2337.

DOI: 10.1007/s10853-013-7931-3

Google Scholar

[52] K. M. Dahham, M. A. M. Nainar, Mechanical Properties and Morphological Studies on Pu-Ha Biocomposite, Biomater. 2 (2013) 390–392.

Google Scholar

[53] W. L. Dissanayaka, C. Zhang, Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration, J. Endod. 46 (2020) 81–89.

DOI: 10.1016/j.joen.2020.06.022

Google Scholar

[54] H. Siddiqi, A. Najeeb, Influence of Carbon Nanotubes on Mechanical Properties of Polyurethane Composites, Compos. Part A 4 (2010) 1–5.

Google Scholar

[55] M. Sultan, Hydroxyapatite/polyurethane composites as promising biomaterials, Adv. Mater. Sci. 3 (2018) 3456.

Google Scholar

[56] A. M. Hezma, I. S. Elashmawi, E. M. Abdelrazek, A. Rajeh, M. Kamal, "Progress in Natural Science : Materials International Enhancement of the thermal and mechanical properties of polyurethane / polyvinyl chloride blend by loading single walled carbon nanotubes, Prog. Nat. Sci. Mater. Int. 3 (2017) 1–6.

DOI: 10.1016/j.pnsc.2017.06.001

Google Scholar

[57] T. Wang, C. Yu, C. Yang, Y. Shieh, Y. Tsai, N. Wang, "Preparation , Characterization , and Properties of Polyurethane-Grafted Multiwalled Carbon Nanotubes and Derived Polyurethane Nanocomposites, Compos. Part A 2 (2011) 814903.

DOI: 10.1155/2011/814903

Google Scholar

[58] B. L. Perkins, N. Naderi, "Carbon Nanostructures in Bone Tissue Engineering, Biophys. 3 (2016)877–899.

Google Scholar

[59] Y. Hu., Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing, Chem. Eng. J. 426 (2021) 130634.

DOI: 10.1016/j.cej.2021.130634

Google Scholar

[60] J. D. A. Gracio, Hydroxyapatite Modified with Carbon-Nanotube-Reinforced Poly ( methyl methacrylate ): A Nanocomposite Material for Biomedical Applications, Biomater. 4 (2008) 694–700.

DOI: 10.1002/adfm.200700888

Google Scholar

[61] M. G. Raucci, D. Giugliano, S. Zeppetelli, L. Ambrosio, Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects, Biomater. 3 (2016) 1–12.

DOI: 10.1093/rb/rbv026

Google Scholar

[62] J. Park, The effect of multi-walled carbon nanotubes / hydroxyapatite nanocomposites on biocompatibility, Adv. Compos. Mater.3046 (2016) 1–13.

Google Scholar

[63] M. Supova, Substituted hydroxyapatites for biomedical applications: A review, Ceram. Int. 41 (2015) 9203–9231.

Google Scholar

[64] S. Asadpour, S. Kargozar, L. Moradi, A. Ai, H. Nosrati, J. Ai, Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications, Int. J. Biol. Macromol. 154 (2020) 1285–1294.

DOI: 10.1016/j.ijbiomac.2019.11.003

Google Scholar

[65] X. Jiang, J. Gu, Y. Zhang, The improvement of mechanical properties of polyurethane coating by multi-walled carbon nanotubes, Trans. Tech. 238 (2011) 2063–(2066).

DOI: 10.4028/www.scientific.net/amr.236-238.2063

Google Scholar

[66] Z. Cui, Z. Zheng, C. Su, J. Si, Q. Wang, I F E S sciences for life Porous 3-D thermoplastic polyurethane ( TPU ) scaffold modified with hydroxyapatite ( HA ) nanoparticles using an ultrasonic method, J. Mater. Sci. 54 (2019) 11231–11242.

DOI: 10.1007/s10853-019-03683-6

Google Scholar

[67] L. Costantini, N. Bouropoulos, D. G. Fatouros, I. Kontopoulou, M. Roldo, Synthesis of carbon nanotubes loaded hydroxyapatite : Potential for controlled drug release from bone implants, J. Adv. Cer. 5 (2016) 232–243.

DOI: 10.1007/s40145-016-0195-z

Google Scholar