Experimental Analysis on Flow Field Pattern of PEM Fuel Cells

Article Preview

Abstract:

The polymer electrolyte membrane (PEM) fuel cells flow fields channels serve the same roles as nutrient and reactant circulation systems in plants and animals, so bio-inspired flow field channels with a similar could improve reactant uniform transport efficiency and boost fuel cell performance. In this analysis, the lung channel configuration of a humane lung and a tree leaf bio-inspired flow field channels are used as an anode and cathode bipolar plate. A channel model is developed for three new flow field patterns designs: leaf design, lung design and triple-serpentine. It has been observed that the performance improvement in terms of power in the bio-inspired flow field is 13.32% more than the triple serpentine. This indicates the bio-inspired design has good performance than other flow field design. Further a parametric steady is carried out experimentally to study the effect of cell operating temperature, anode and cathode humidity, hydrogen and oxygen flow rate on the cell performance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

179-191

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Cao, Y. Li, G. Zhang, K. Jermsittiparsert, N. Razmjooy, Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm, Energy Reports. 5 (2019) 1616-1625.

DOI: 10.1016/j.egyr.2019.11.013

Google Scholar

[2] W. R. W. Daud, R. E. Rosli, E. H. Majlan, S. A. A. Hamid, R. Mohamed, T. Husaini, PEM fuel cell system control: A review, Renewable Energy. 113 (2017) 620-638.

DOI: 10.1016/j.renene.2017.06.027

Google Scholar

[3] V. Mehta, J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, Journal of Power Sources. 114 (2003) 32-53.

DOI: 10.1016/s0378-7753(02)00542-6

Google Scholar

[4] S. L. Chavan, D. B. Talange, Modeling and performance evaluation of PEM fuel cell by controlling its input parameters, Energy. 138 (2017) 437-445.

DOI: 10.1016/j.energy.2017.07.070

Google Scholar

[5] W. Saeeda, G. Warkozek, Modeling and Analysis of Renewable PEM Fuel Cell System, Energy Procedia. 74(2015) 87-101.

DOI: 10.1016/j.egypro.2015.07.527

Google Scholar

[6] S. R. Badduri, G. N. Srinivasulu, S. S. Rao, Experimental analysis of PEM fuel cell performance using lung channel design bipolar plate, Int. J. Green Energy. 16 (2019) 1591-1601.

DOI: 10.1080/15435075.2019.1677238

Google Scholar

[7] S. A. Ghadhban, W. H. Alawee, H. A. Dhahad, Study effects of bio-inspired flow filed design on Polymer Electrolyte Membrane fuel cell performance, Case Stud. Therm. Eng. 24 (2021) 100841.

DOI: 10.1016/j.csite.2021.100841

Google Scholar

[8] N. Guo, M. C. Leu, U. O. Koylu, Bio-inspired flow field designs for polymer electrolyte membrane fuel cells, Int. J. Hydrogen Energy. 39 (2014) 21185-21195.

DOI: 10.1016/j.ijhydene.2014.10.069

Google Scholar

[9] N. Guo, Bio-inspired design, fabrication and testing of bipolar plates for PEM fuel cells, Doctoral Dissertations. 1818 (2013) 1-173.

Google Scholar

[10] V. Velisala, G. Naga, Numerical Simulation and Experimental Comparison of Single, Double and Triple Serpentine Flow Channel Configuration on Performance of a PEM Fuel Cell, Arab. J. Sci. Eng. 43 (2018) 1225-1234.

DOI: 10.1007/s13369-017-2813-7

Google Scholar

[11] S. R. Badduri, G. N. Srinivasulu, S. S. Rao, Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell, Chin. J. Chem. Eng. 28 (2020) 824-831.

DOI: 10.1016/j.cjche.2019.07.010

Google Scholar

[12] Y. Awin, N. Dukhan, Metal-Foam Bipolar Plate for PEM Fuel Cells: Simulations and Preliminary Results, Mater. Sci. Forum. 933 (2018) 342-350.

DOI: 10.4028/www.scientific.net/msf.933.342

Google Scholar

[13] T. A. B. Santoro, A. O. Neto, R. Chiba, E. S. M. Seo, E. G. Franco, Characterization of Proton Exchange Membrane Fuel Cell Cathode Catalysts Prepared by Alcohol-Reduction Process, Mater. Sci. Forum. 660 (2010) 94-99.

DOI: 10.4028/www.scientific.net/msf.660-661.94

Google Scholar

[14] J. Y. Jang, C. H. Cheng, W. T. Liao, Y. X. Huang, Y. C. Tsai, Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels, Appl. Energy. 99 (2012) 67-79.

DOI: 10.1016/j.apenergy.2012.04.011

Google Scholar

[15] H. W. Wu, A review of recent development: Transport and performance modeling of PEM fuel cells, Appl. Energy. 165 (2016) 81–106.

DOI: 10.1016/j.apenergy.2015.12.075

Google Scholar

[16] J. P. Kloess, X. Wang, J. Liu, Z. Shi, L. Guessous, Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells, J. Power Sources. 188 (2009) 132-140.

DOI: 10.1016/j.jpowsour.2008.11.123

Google Scholar

[17] Y. Wang, C. Si, Y. Qin, X. Wang, Y. Fan, Y. Gao, Bio-inspired design of an auxiliary fishbone-shaped cathode flow field pattern for polymer electrolyte membrane fuel cells, Energy Convers. Manag. 227 (2020) 113588.

DOI: 10.1016/j.enconman.2020.113588

Google Scholar

[18] T. Wilberforce, Z. E. Hassan, E. Ogungbemi, O. Ijaodola, F. N. Khatib, A. Durrant, J. Thompson, A. Baroutaji, A. G. Olabi, A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells, Renew. Sustain. Energy Rev. 111 (2019) 236-260, (2019).

DOI: 10.1016/j.rser.2019.04.081

Google Scholar

[19] H. Heidary, M. Jafar Kermani, N. Khajeh Hosseini Dalasm, Performance analysis of PEM fuel cells cathode catalyst layer at various operating conditions, Int. J. Hydrogen Energy. 41 (2016) 22274–22284.

DOI: 10.1016/j.ijhydene.2016.08.178

Google Scholar