[1]
B.Bernevig, A.Hughes, L. Taylor, Topological Insulators and Topological Superconductors, Princeton University Press, (2013).
Google Scholar
[2]
J. Moore, The birth of topological insulators, Nature 464(2010) 194–198.
Google Scholar
[3]
Q. X. Liang, S. C. Zhang , The quantum spin Hall effect and topological insulators, Physics Today, 63(1) (2010) 33–38.
DOI: 10.1063/1.3293411
Google Scholar
[4]
S. Q. Shen, W. Y. Shan, H. Z. Lu , Topological insulator and the Dirac equation, SPIN, 01(01) (2011) 33–44.
DOI: 10.1142/s2010324711000057
Google Scholar
[5]
Q. X. Liang, S. C. Zhang, Topological insulators and superconductors, Reviews of Modern Physics, 83(4)(2011) 1057–1110.
Google Scholar
[6]
V. M. Pereira, S.G. Altendorf, C. E. Liu, S.C. Liao, A. C. Komarek, M. Guo, H. J. Lin, C. T. Chen, M. Hong, J. Kwo, L. H. Tjeng, Topological insulator interfaced with ferromagnetic insulators: Bi2Te3 thin films on magnetite and iron garnet, Physical Review Materials, 4(6)(2020).
DOI: 10.1103/physrevmaterials.4.064202
Google Scholar
[7]
Hasan, M. Zahid, C. L. Kan, Colloquium: Topological insulator, Reviews of Modern Physics 82(4)(2010) 3045–3067.
Google Scholar
[8]
S.Q. Shen, Topological insulator, Springer,Berlin, (2012).
Google Scholar
[9]
D. Carpentier, Topology of bands in solids: From insulators to dirac matter, Dirac Matter, Birkhäuser, Cham ( 2017) 95-129.
DOI: 10.1007/978-3-319-32536-1_5
Google Scholar
[10]
C.L. Kane, and E. J. Mele, Quantum spin Hall effect in graphene, Physical review letters 95(22) (2005) 226801.
Google Scholar
[11]
M. Fruchart, D. Carpentier, An introduction to topological insulators. Comptes Rendus Physique, 14(9-10)(2013) 779–815.
DOI: 10.1016/j.crhy.2013.09.013
Google Scholar
[12]
M.A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D.N. Christodoulides, M. Khajavikhan, Topological insulator laser: Experiments, Science 359 (2018).
DOI: 10.1126/science.aar4005
Google Scholar
[13]
J.J. Carey, The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications, Journal of Solid State Chemistry 213 (2014) 116-125.
DOI: 10.1016/j.jssc.2014.02.014
Google Scholar
[14]
G. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations, Physical Review B 76(7) (2007) 075201.
Google Scholar
[15]
L. Abdullahi, A. Shaari, R. Ahmed, N. Jarkoni, Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study, Results in physics 7 (2017) 2302-2310.
DOI: 10.1016/j.rinp.2017.06.040
Google Scholar
[16]
V. Lahtinen, J.K. Pachos, A short introduction to topological quantum computation, SciPost Physics 3(3) (2017).
DOI: 10.21468/scipostphys.3.3.021
Google Scholar
[17]
D. Kong, J.C. Randel, H. Peng, J.J Cha, S. Meister, K. Lai,Y. Chen, Z.X. Shen, H.C. Manoharan, Y. Cui, Topological insulator nanowires and nanoribbons, Nano letters 10(1) (2010) 329-333.
DOI: 10.1021/nl903663a
Google Scholar
[18]
E. Song, A. Baranovskiy, E. Xu, T. Busani, B. Swartzentruber, S. Zhang, Y. Amouyal, J.A. Martinez, Manipulating thermal and electronic transports in thermoelectric Bi2Te3 nanowires by porphyrin adsorption, AIP Advances 8(10) (2018) 105010.
DOI: 10.1063/1.5046385
Google Scholar
[19]
H. Aramberri, M. Carmen Muñoz, Strain effects in topological insulators: Topological order and the emergence of switchable topological interface states in Sb 2 Te 3/Bi 2 Te 3 heterojunctions, Physical Review B 95(20) (2017): 205422.
DOI: 10.1103/physrevb.95.205422
Google Scholar
[20]
Fu, Liang, Charles L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Physical review letters 100(9) (2008) 096407.
DOI: 10.1103/physrevlett.100.096407
Google Scholar
[21]
S.A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, von S. von Molnár, M. L. Roukes, A. Yu Chtchelkanova, D. M. TregerSpintronics: a spin-based electronics vision for the future, science 294(5546) (2001) 1488-1495.
DOI: 10.1126/science.1065389
Google Scholar
[23]
M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices, Physical review letters 61(21) (1988) 2472.
DOI: 10.1103/physrevlett.61.2472
Google Scholar
[24]
G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical review B 39(7) (1989) 4828.
DOI: 10.1103/physrevb.39.4828
Google Scholar
[25]
S. Raghu, X.L. Qi, C. Honerkamp, S.C. Zhang, Topological mott insulators, Physical review letters 100(15) (2008) 156401.
DOI: 10.1103/physrevlett.100.156401
Google Scholar
[26]
M. Dzero, K. Sun, P. Coleman, V. Galitski, Theory of topological Kondo insulators, Physical Review B 85(4) (2012) 045130.
DOI: 10.1103/physrevb.85.045130
Google Scholar
[27]
H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface, Nature physics 5(6) (2009) 438-442.
DOI: 10.1038/nphys1270
Google Scholar
[28]
W. Zhang, R. Yu, H. J. Zhang, X. Dai, Z. Fang, .First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New Journal of Physics 12(6) (2010) 065013.
DOI: 10.1088/1367-2630/12/6/065013
Google Scholar
[29]
Q. Lu, H. Y. Zhang, Y. Cheng, X. R. Chen, G. F. Ji, Phase transition, elastic and electronic properties of topological insulator Sb2Te3 under pressure: First principle study, Chinese Physics B 25(2) (2016) 026401.
DOI: 10.1088/1674-1056/25/2/026401
Google Scholar
[30]
Yavorsky, B. Yu, N. F. Hinsche, I. Mertig, P. Zahn. "Electronic structure and transport anisotropy of Bi 2 Te 3 and Sb 2 Te 3, Physical Review B 84(16) (2011) 165208.
Google Scholar
[31]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18)(1996), 3865–3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[32]
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Physical review B 13(12) (1976) 5188.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[33]
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations -a reply, Phys. Rev. B 16 (1976) 1748-1749.
DOI: 10.1103/physrevb.16.1748
Google Scholar
[34]
T. L. Anderson, H. B. Krause, Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3− ySey compounds, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30(5) (1974) 1307-1310.
Google Scholar
[35]
S. M. Souza, C. M. Poffo, D. M. Trichês, J. C. De Lima, T. A. Grandi, A. Polian, M. Gauthier, High pressure monoclinic phases of Sb2Te3, Physica B: Condensed Matter 407(18) (2012) 3781-3789.
DOI: 10.1016/j.physb.2012.05.061
Google Scholar
[36]
J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, Y. H. Khang, Optical properties of pseudobinary GeTe, Ge 2 Sb 2 Te 5, GeSb 2 Te 4, GeSb 4 Te 7, and Sb 2 Te 3 from ellipsometry and density functional theory, Physical Review B 80(11) (2009) 115209.
DOI: 10.1103/physrevb.80.169901
Google Scholar
[37]
J. E. Moore, The birth of topological insulators, Nature, 464(7286)(2010) 194–198.
DOI: 10.1038/nature08916
Google Scholar
[38]
M. Schlüter, J. R. Chelikowsky, S. G. Louie, M. L. Cohen, Self-Consistent Pseudopotential Calculations on Si (111) Unreconstructed and (2× 1) Reconstructed Surfaces, Physical Review Letters 34(22) (1975) 1385.
DOI: 10.1103/physrevlett.34.1385
Google Scholar
[39]
J. M. Crowley, J. T. Kheli, W. A. Goddard III, Accurate Ab initio quantum mechanics simulations of Bi2Se3 and Bi2Te3 topological insulator surfaces, The journal of physical chemistry letters 6(19) (2015) 3792-3796.
DOI: 10.1021/acs.jpclett.5b01586
Google Scholar