A Newly Developed Dispersive Interaction Approach, DFT-D3, to the Three-Dimensional Topological Host Material Sb2Te3

Article Preview

Abstract:

Antimony Telluride (Sb2Te3), a topological insulator is a layered semiconductor material with hexagonal unit cell similar to graphene. The characteristic presence of their conducting edges or surfaces with self-induced protection, promise for remarkable future applications. In this exertion based on the first principle approach, the structural and electronic properties of Sb2Te3 compound have been investigated for both without and with spin orbit coupling (SOC). Lattice structure, band structure, total density of states (TDOS), partial density of states (PDOS), energy bands of surface states are determined within Quantum Espresso simulation package. Furthermore, dispersive interactions, induced due to the presence of van-der-Waals forces have also been taken care of. The newly developed method of DFT-D3 has been incorporated for accurate predictions of band gap and lattice parameters. A proficient model, The Slab Model, has been used to observe the presence of single Dirac cone on the surface. To our knowledge, our theoretical investigations are valid and are found to be congruous with the observed data.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

195-202

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.Bernevig, A.Hughes, L. Taylor, Topological Insulators and Topological Superconductors, Princeton University Press, (2013).

Google Scholar

[2] J. Moore, The birth of topological insulators, Nature 464(2010) 194–198.

Google Scholar

[3] Q. X. Liang, S. C. Zhang , The quantum spin Hall effect and topological insulators, Physics Today, 63(1) (2010) 33–38.

DOI: 10.1063/1.3293411

Google Scholar

[4] S. Q. Shen, W. Y. Shan, H. Z. Lu , Topological insulator and the Dirac equation, SPIN, 01(01) (2011) 33–44.

DOI: 10.1142/s2010324711000057

Google Scholar

[5] Q. X. Liang, S. C. Zhang, Topological insulators and superconductors, Reviews of Modern Physics, 83(4)(2011) 1057–1110.

Google Scholar

[6] V. M. Pereira, S.G. Altendorf, C. E. Liu, S.C. Liao, A. C. Komarek, M. Guo, H. J. Lin, C. T. Chen, M. Hong, J. Kwo, L. H. Tjeng, Topological insulator interfaced with ferromagnetic insulators: Bi2Te3 thin films on magnetite and iron garnet, Physical Review Materials, 4(6)(2020).

DOI: 10.1103/physrevmaterials.4.064202

Google Scholar

[7] Hasan, M. Zahid, C. L. Kan, Colloquium: Topological insulator, Reviews of Modern Physics 82(4)(2010) 3045–3067.

Google Scholar

[8] S.Q. Shen, Topological insulator, Springer,Berlin, (2012).

Google Scholar

[9] D. Carpentier, Topology of bands in solids: From insulators to dirac matter, Dirac Matter, Birkhäuser, Cham ( 2017) 95-129.

DOI: 10.1007/978-3-319-32536-1_5

Google Scholar

[10] C.L. Kane, and E. J. Mele, Quantum spin Hall effect in graphene, Physical review letters 95(22) (2005) 226801.

Google Scholar

[11] M. Fruchart, D. Carpentier, An introduction to topological insulators. Comptes Rendus Physique, 14(9-10)(2013) 779–815.

DOI: 10.1016/j.crhy.2013.09.013

Google Scholar

[12] M.A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D.N. Christodoulides, M. Khajavikhan, Topological insulator laser: Experiments, Science 359 (2018).

DOI: 10.1126/science.aar4005

Google Scholar

[13] J.J. Carey, The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications, Journal of Solid State Chemistry 213 (2014) 116-125.

DOI: 10.1016/j.jssc.2014.02.014

Google Scholar

[14] G. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations, Physical Review B 76(7) (2007) 075201.

Google Scholar

[15] L. Abdullahi, A. Shaari, R. Ahmed, N. Jarkoni, Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study, Results in physics 7 (2017) 2302-2310.

DOI: 10.1016/j.rinp.2017.06.040

Google Scholar

[16] V. Lahtinen, J.K. Pachos, A short introduction to topological quantum computation, SciPost Physics 3(3) (2017).

DOI: 10.21468/scipostphys.3.3.021

Google Scholar

[17] D. Kong, J.C. Randel, H. Peng, J.J Cha, S. Meister, K. Lai,Y. Chen, Z.X. Shen, H.C. Manoharan, Y. Cui, Topological insulator nanowires and nanoribbons, Nano letters 10(1) (2010) 329-333.

DOI: 10.1021/nl903663a

Google Scholar

[18] E. Song, A. Baranovskiy, E. Xu, T. Busani, B. Swartzentruber, S. Zhang, Y. Amouyal, J.A. Martinez, Manipulating thermal and electronic transports in thermoelectric Bi2Te3 nanowires by porphyrin adsorption, AIP Advances 8(10) (2018) 105010.

DOI: 10.1063/1.5046385

Google Scholar

[19] H. Aramberri, M. Carmen Muñoz, Strain effects in topological insulators: Topological order and the emergence of switchable topological interface states in Sb 2 Te 3/Bi 2 Te 3 heterojunctions, Physical Review B 95(20) (2017): 205422.

DOI: 10.1103/physrevb.95.205422

Google Scholar

[20] Fu, Liang, Charles L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Physical review letters 100(9) (2008) 096407.

DOI: 10.1103/physrevlett.100.096407

Google Scholar

[21] S.A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, von S. von Molnár, M. L. Roukes, A. Yu Chtchelkanova, D. M. TregerSpintronics: a spin-based electronics vision for the future, science 294(5546) (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[23] M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices, Physical review letters 61(21) (1988) 2472.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[24] G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical review B 39(7) (1989) 4828.

DOI: 10.1103/physrevb.39.4828

Google Scholar

[25] S. Raghu, X.L. Qi, C. Honerkamp, S.C. Zhang, Topological mott insulators, Physical review letters 100(15) (2008) 156401.

DOI: 10.1103/physrevlett.100.156401

Google Scholar

[26] M. Dzero, K. Sun, P. Coleman, V. Galitski, Theory of topological Kondo insulators, Physical Review B 85(4) (2012) 045130.

DOI: 10.1103/physrevb.85.045130

Google Scholar

[27] H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface, Nature physics 5(6) (2009) 438-442.

DOI: 10.1038/nphys1270

Google Scholar

[28] W. Zhang, R. Yu, H. J. Zhang, X. Dai, Z. Fang, .First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New Journal of Physics 12(6) (2010) 065013.

DOI: 10.1088/1367-2630/12/6/065013

Google Scholar

[29] Q. Lu, H. Y. Zhang, Y. Cheng, X. R. Chen, G. F. Ji, Phase transition, elastic and electronic properties of topological insulator Sb2Te3 under pressure: First principle study, Chinese Physics B 25(2) (2016) 026401.

DOI: 10.1088/1674-1056/25/2/026401

Google Scholar

[30] Yavorsky, B. Yu, N. F. Hinsche, I. Mertig, P. Zahn. "Electronic structure and transport anisotropy of Bi 2 Te 3 and Sb 2 Te 3, Physical Review B 84(16) (2011) 165208.

Google Scholar

[31] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18)(1996), 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[32] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Physical review B 13(12) (1976) 5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[33] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations -a reply, Phys. Rev. B 16 (1976) 1748-1749.

DOI: 10.1103/physrevb.16.1748

Google Scholar

[34] T. L. Anderson, H. B. Krause, Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3− ySey compounds, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30(5) (1974) 1307-1310.

Google Scholar

[35] S. M. Souza, C. M. Poffo, D. M. Trichês, J. C. De Lima, T. A. Grandi, A. Polian, M. Gauthier, High pressure monoclinic phases of Sb2Te3, Physica B: Condensed Matter 407(18) (2012) 3781-3789.

DOI: 10.1016/j.physb.2012.05.061

Google Scholar

[36] J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, Y. H. Khang, Optical properties of pseudobinary GeTe, Ge 2 Sb 2 Te 5, GeSb 2 Te 4, GeSb 4 Te 7, and Sb 2 Te 3 from ellipsometry and density functional theory, Physical Review B 80(11) (2009) 115209.

DOI: 10.1103/physrevb.80.169901

Google Scholar

[37] J. E. Moore, The birth of topological insulators, Nature, 464(7286)(2010) 194–198.

DOI: 10.1038/nature08916

Google Scholar

[38] M. Schlüter, J. R. Chelikowsky, S. G. Louie, M. L. Cohen, Self-Consistent Pseudopotential Calculations on Si (111) Unreconstructed and (2× 1) Reconstructed Surfaces, Physical Review Letters 34(22) (1975) 1385.

DOI: 10.1103/physrevlett.34.1385

Google Scholar

[39] J. M. Crowley, J. T. Kheli, W. A. Goddard III, Accurate Ab initio quantum mechanics simulations of Bi2Se3 and Bi2Te3 topological insulator surfaces, The journal of physical chemistry letters 6(19) (2015) 3792-3796.

DOI: 10.1021/acs.jpclett.5b01586

Google Scholar