[1]
A.C. Eringen, Simple microfluids. International Journal of Engineering Science, 2(2) (1964) 205-217.
Google Scholar
[2]
A.C. Eringen, Theory of micropolar fluids. J. Math. Anal. Appl., 16 (1966) 1-18.
Google Scholar
[3]
A.C. Eringen, Theory of thermo-microfluids. Journal of Mathematical Analysis and Applications, 38 (1972) 480-496.
Google Scholar
[4]
H.A. Ogunseye, S.O. Salawu, Y.O. Tijani, M. Riliwan, P. Sibanda, Dynamical analysis of hydromagnetic Brownian and thermophoresis 5 of 12effects of squeezing Eyring-Powell nanofluid flow with variable thermal conductivity and chemical reaction. Multidiscipline Modeling in Materials and Structures, 15(6) (2019) 1100-1120.
DOI: 10.1108/mmms-01-2019-0008
Google Scholar
[5]
E.O. Fatunmbi, S.O. Salawu, Thermodynamic second law analysis of magneto-micropolar fluid flow past nonlinear porous media with non-uniform heat source. Propulsion and Power Research, 9(3) (2020) 281-288.
DOI: 10.1016/j.jppr.2020.03.004
Google Scholar
[6]
T. Ariman, M.A. Turk, M.D. Sylvester, Microcontinuum fluid mechanicsa review, Int. Journal of Engin. Science, 11(1973) 905930.
Google Scholar
[7]
T. Ariman, M.A. Turk, M.D. Sylvester, Application of microcontinuum fluid mechanicsa review, International Journal of Engineering Science, 12 (1974) 273293.
Google Scholar
[8]
G. Lukaszewicz, Micropolar Fluids: Theory and Application, Birkhuser, Basel, (1999).
Google Scholar
[9]
A.C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer: New York, (2001).
Google Scholar
[10]
O.K. Koriko, I.L. Animasaun, A.J. Omowaye, T. Oreyeni, The combined influence of nonlinear thermal radiation and thermal stratification on the dynamics of micropolar fluid along a vertical surface, Multidiscipline Modeling in Materials and Structures, 12 (2018) 0155-0163.
DOI: 10.1108/mmms-12-2017-0155
Google Scholar
[11]
L.A. Lund, Z. Omar, I. Khan, J. Raza, E.M. Sherif, A.H. Seikh, Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and Joule heating over an exponential shrinking sheet: Triple solutions and stability analysis, Symmetry, 12 (2020) 142.
DOI: 10.3390/sym12010142
Google Scholar
[12]
E.O. Fatunmbi, S.S. Okoya, O.D. Makinde, Convective heat transfer analysis of hydromagnetic Micropolar Fluid Flow Past an Inclined Nonlinear Stretching Sheet with variable thermo-physical properties. Diffusion Foundations, 26 (2020) 63-77.
DOI: 10.4028/www.scientific.net/df.26.63
Google Scholar
[13]
L. Crane, Flow past a stretching plate, Z. angew. Math. Phys. 21 (1970) 645647.
Google Scholar
[14]
M. Turkyilmazoglu, Flow of a micropolar fluid due to a porous stretching sheet and heat transfer, International Journal of Non-Linear Mechanics, 83 (2016) 5964.
DOI: 10.1016/j.ijnonlinmec.2016.04.004
Google Scholar
[15]
S.R. Mishra, I. Khan, Q.M. Al-mdallal, T. Asifa, Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source, Case Studies in Thermal Engineering, 11 (2018) 113119.
DOI: 10.1016/j.csite.2018.01.005
Google Scholar
[16]
C.Y. Wang, Liquid film on an unsteady stretching sheet, Q. Appl. Math. 48 (1990) 601610.
Google Scholar
[17]
E.O. Fatunmbi, A. Adeniyan, Heat and mass transfer in MHD micropolar fluid flow over a stretching sheet with velocity and thermal slip conditions, Open Journal of Fluid Dynamics, 8 (2018) 195-215.
DOI: 10.4236/ojfd.2018.82014
Google Scholar
[18]
P.G. Siddheshwara, C.V.S. Krishna, Linear and non-linear analysis of convection in a micropolar fluid occupying a porous medium, Int. J. Non-Linear Mech. 38 (2003) 15611579.
DOI: 10.1016/s0020-7462(02)00120-8
Google Scholar
[19]
R. Nazar, A. Ishak, I. Pop, Unsteady boundary layer flow over a stretching sheet in a micropolar fluid, Int. J. Math. Phys. Eng. Sci. 2 (2008) 161168.
Google Scholar
[20]
A. Ishak, R. Nazar, I. Pop, MHD boundary-layer flow due to a moving extensible surface, J. Eng. Math. 62 (2008) 2333.
DOI: 10.1007/s10665-007-9169-z
Google Scholar
[21]
A. Bejan, Second law analysis in heat transfer and thermal design, Adv. Heat Tran. 15 (1982) 158.
Google Scholar
[22]
A. Bejan, Entropy Generation Minimization, second ed., CRC, New York, (1996).
Google Scholar
[23]
N.S. Khan, P. Kumam, P. Thounthong, Second law analysis with effects of Arrhenius activation energy and binary chemical reaction on nanofluid flow, Scientific Reports, 10 (2020) 1226.
DOI: 10.1038/s41598-020-57802-4
Google Scholar
[24]
S.O. Salawu, R.A. Oderinu and A.D. Ohaegbue, Thermal runaway and thermodynamic second law of a reactive couple stress fluid with variable properties and Navier slips. Scientific African, 7 (2020) e00261.
DOI: 10.1016/j.sciaf.2019.e00261
Google Scholar
[25]
S.O. Salawu, A.B. Disu, Branch-chain criticality and explosion for a generalized thermal Oldroyd 6-constant Couette reactive fluid flow. South African Journal of Chemical Engineering, 34 (2020) 90-96.
DOI: 10.1016/j.sajce.2020.06.004
Google Scholar
[26]
E.O. Fatunmbi, A. Adeniyan, Nonlinear thermal radiation and entropy generation on steady flow of magneto-micropolar fluid passing a stretchable sheet with variable properties, Results in Engineering, 6 (2020) 100142.
DOI: 10.1016/j.rineng.2020.100142
Google Scholar
[27]
MD. Shamshuddin, S.O. Salawu, H.A. Ogunseye, F. Mabood, Dissipative Power-law fluid flow using spectral quasi linearization method over an exponentially stretchable surface with Hall current and power-law slip velocity. International Communications in Heat and Mass Transfer, 119 (2020) 104933.
DOI: 10.1016/j.icheatmasstransfer.2020.104933
Google Scholar
[28]
A.M. Olanrewaju, S.O. Salawu, P.O. Olanrewaju, S.A. Amoo, Unsteady radiative MHD flow and entropy generation of Maxwell nanofluid in porous media with Arrhenius chemical kinetic. Cogent Engineering, 8(1) (2021) 1942639.
DOI: 10.1080/23311916.2021.1942639
Google Scholar
[30]
L.J. Grubka, K.M. Bobba, Heat Transfer Characteristics of a Continuous, Stretching Surface With Variable Temperature, Transactions of the ASME, 107 (1985), 1-3.
DOI: 10.1115/1.3247387
Google Scholar