[1]
R.Q. Frazer, R.T. Byron, P.B. Osborne, K.P. West, PMMA: an essential material in medicine and dentistry, J. Long Term Eff. Med. Implants. 15 (2005) 629-639.
DOI: 10.1615/jlongtermeffmedimplants.v15.i6.60
Google Scholar
[2]
M. Hassan, M. Asghar, S.U. Din, M.S. Zafar, Thermoset polymethacrylate-based materials for dental applications, in: V. Grumezescu, A. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier, Amsterdam, 2019, pp.273-308.
DOI: 10.1016/b978-0-12-816874-5.00008-6
Google Scholar
[3]
T. Nejatian, S. Pezeshki, A.U. Yaqin Syed, Acrylic denture base materials, in: Z. Khurshid, S. Najeeb, M.S. Zafar, F. Sefat (Eds.), Advanced Dental Biomaterials, Elsevier, Amsterdam, 2019, pp.79-104.
DOI: 10.1016/b978-0-08-102476-8.00005-0
Google Scholar
[4]
P.A. Leggat, U. Kedjarune, Toxicity of methyl methacrylate in dentistry, Int. Dent. J. 53 (2003) 126-131.
DOI: 10.1111/j.1875-595x.2003.tb00736.x
Google Scholar
[5]
E. Khor, Chitin: fulfilling a biomaterials promise, Elsevier Applied Science, Amsterdam, (2001).
Google Scholar
[6]
S.V. Vissarionov, M.S. Asadulaev, A.S. Shabunin, V.E. Yudin, M.B. Paneiakh, P.V. Popryadukhin, Yu.A. Novosad, V.A. Gordienko, A.G. Aganesov, Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message), Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 8 (2020) 53-62.
DOI: 10.17816/ptors16480
Google Scholar
[7]
C. Sharma, A.K. Dinda, P.D. Potdar, C.F. Chou, N.C. Mishra, Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering, Mater. Sci. Eng. C Mater. Biol. Appl. 64 (2016) 416-427.
DOI: 10.1016/j.msec.2016.03.060
Google Scholar
[8]
Chitin and Chitosan. Obtaining, properties and application, K.G. Scriabin, G.A. Vikhoreva, V.P. Varlamov (Eds.), Nauka, Moscow, (2002).
Google Scholar
[9]
L. Shi, X. Fang, L. Xing, M. Chen, D. Zhu, X. Guo, L. Zhao, Z. Tang, Chitosan nanoparticles as drug delivery carriers for biomedical engineering, J. Chem. Soc. Pakistan. 33 (2011) 929-934.
Google Scholar
[10]
V. Zargar, M. Asghari, A. Dashti, A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications, ChemBioEng Reviews. 2 (2015) 204-226.
DOI: 10.1002/cben.201400025
Google Scholar
[11]
D.A. Buzinova, A.B. Shipovskaya, Sorption and bactericide properties of chitosan films, Izvestiya of Saratov University. Chemistry. Biology. Ecology. 8 (2008) 42-46.
Google Scholar
[12]
Kusmono, I. Abdurrahim, Water sorption, antimicrobial activity, and thermal and mechanical properties of chitosan/clay/glycerol nanocomposite films, Heliyon. 5 (2019) 2342.
DOI: 10.1016/j.heliyon.2019.e02342
Google Scholar
[13]
M.S. Zafar, Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers (Basel). 12 (2020) 2299.
DOI: 10.3390/polym12102299
Google Scholar
[14]
K.N. Braun, J.N. Mello, R. Rached, A.A. Del Bel Cury, Surface texture and some properties of acrylic resins submitted to chemical polishing, J. Oral. Rehabil. 30 (2003) 91-98.
DOI: 10.1046/j.1365-2842.2003.00997.x
Google Scholar
[15]
U. Kedjarune, N. Charoenworaluk, S. Koontongkaew, Release of methyl methacrylate from heat-curved and autopolymerized resins: Cytotoxicity testing related to residual monomer, Aust. Dent. J. 44 (1999) 25-30.
DOI: 10.1111/j.1834-7819.1999.tb00532.x
Google Scholar
[16]
А.I. Burua, А.S. Redchuk, E.V. Тkachenko, S.P. Suchilina-Sokolenko, IR spectra and structure of composites based on polyimide 6 filled with arimide, Voprosy Khimii i Khimicheskoi Tekhnologii. 1 (2010) 67-70.
Google Scholar
[17]
L.A. Yakovishin, E.V. Tkachenko, Y.V. Tolstenko, Use of ATR IR spectroscopy for analysis of composite material based on phenylone C-1, Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 5 (2019) 230-237.
Google Scholar
[18]
T. Ezhevskaya, A. Bublikov, IR Fourier spectrometers with specialized attachments (ATR, IR microscope, etc.). Measurement features, Analytics. 1 (2012) 38-45.
Google Scholar
[19]
Voron'ko N., Sokolan N., Kuchina Y., Berestova G., Formation of polyelectrolyte complexes from chitosan and alkaline gelatin, KnE Life Sciences. 5 (2020) 109-119.
Google Scholar
[20]
A.V. Volodko, V.N. Davydova, V.P. Glazunov, E.A. Chusovitin, I.V. Sorokina, I.M. Yermak, Soluble polyelectrolyte carrageenan: chitosan complexes and their gastroprotective activity, Achievements in the Life Sciences. 7 (2013) 97-98.
DOI: 10.1016/j.carbpol.2013.10.049
Google Scholar
[21]
A.V. Volod'ko, V.N. Davydova, E. Chusovitin, I.V. Sorokina, M.P. Dolgikh, T.G. Tolstikova, S.A. Balagan, N.G. Galkin, I.M. Yermak, Soluble chitosan-carrageenan polyelectrolyte complexes and their gastroprotective activity, Carbohydr. Polym. 101 (2014) 1087-1093.
DOI: 10.1016/j.carbpol.2013.10.049
Google Scholar
[22]
S. Yasmeen, M. Kanti Kabiraz, B. Saha, M. Rakibul Qadir, M. Abdul Gafur, S. Md. Masum, Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent, Int. Res. J. Pure Appl. Chem. 10 (2015) 1-14.
DOI: 10.9734/irjpac/2016/23315
Google Scholar
[23]
Y. Wu, W. Yang, C. Wang, J. Hu, S. Fu, Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate, Int. J. Pharm. 295 (2005) 235-245.
DOI: 10.1016/j.ijpharm.2005.01.042
Google Scholar
[24]
J.N.N. Bueno, E. Corradini, P.R. de Souza, V. de S. Marques, E. Radovanovic, E.C. Muniz, Films based on mixtures of zein, chitosan, and PVA: Development with perspectives for food packaging application, Polymer Testing. 101 (2021) 107279.
DOI: 10.1016/j.polymertesting.2021.107279
Google Scholar
[25]
L.A. Kazitsyna, N.B. Kupletskaia, Application of UV, IR, NMR and mass spectroscopy in organic chemistry, Izd-vo MSU, Moscow, (1979).
Google Scholar