Development and IR spectroscopic Analysis of Composite Materials Based on Poly(Methyl Methacrylate) and Chitosan

Article Preview

Abstract:

Poly (methyl methacrylate) (PMMA) and chitosan composites were synthesized by means of the mechanochemical method. In addition, PMMA–chitosan films were obtained in polar (water) and non-polar (benzene) solvents. Obtained polymer composites were analyzed by the Fourier transform infrared spectroscopy method using the ATR attachment with diamond crystal. The presence of intermolecular hydrogen bonds in formation of PMMA and chitosan polymer composites was shown. С=О group of PMMA and OH and NH2 groups of chitosan molecule take part in the formation of hydrogen bonds.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

145-154

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Q. Frazer, R.T. Byron, P.B. Osborne, K.P. West, PMMA: an essential material in medicine and dentistry, J. Long Term Eff. Med. Implants. 15 (2005) 629-639.

DOI: 10.1615/jlongtermeffmedimplants.v15.i6.60

Google Scholar

[2] M. Hassan, M. Asghar, S.U. Din, M.S. Zafar, Thermoset polymethacrylate-based materials for dental applications, in: V. Grumezescu, A. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier, Amsterdam, 2019, pp.273-308.

DOI: 10.1016/b978-0-12-816874-5.00008-6

Google Scholar

[3] T. Nejatian, S. Pezeshki, A.U. Yaqin Syed, Acrylic denture base materials, in: Z. Khurshid, S. Najeeb, M.S. Zafar, F. Sefat (Eds.), Advanced Dental Biomaterials, Elsevier, Amsterdam, 2019, pp.79-104.

DOI: 10.1016/b978-0-08-102476-8.00005-0

Google Scholar

[4] P.A. Leggat, U. Kedjarune, Toxicity of methyl methacrylate in dentistry, Int. Dent. J. 53 (2003) 126-131.

DOI: 10.1111/j.1875-595x.2003.tb00736.x

Google Scholar

[5] E. Khor, Chitin: fulfilling a biomaterials promise, Elsevier Applied Science, Amsterdam, (2001).

Google Scholar

[6] S.V. Vissarionov, M.S. Asadulaev, A.S. Shabunin, V.E. Yudin, M.B. Paneiakh, P.V. Popryadukhin, Yu.A. Novosad, V.A. Gordienko, A.G. Aganesov, Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message), Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 8 (2020) 53-62.

DOI: 10.17816/ptors16480

Google Scholar

[7] C. Sharma, A.K. Dinda, P.D. Potdar, C.F. Chou, N.C. Mishra, Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering, Mater. Sci. Eng. C Mater. Biol. Appl. 64 (2016) 416-427.

DOI: 10.1016/j.msec.2016.03.060

Google Scholar

[8] Chitin and Chitosan. Obtaining, properties and application, K.G. Scriabin, G.A. Vikhoreva, V.P. Varlamov (Eds.), Nauka, Moscow, (2002).

Google Scholar

[9] L. Shi, X. Fang, L. Xing, M. Chen, D. Zhu, X. Guo, L. Zhao, Z. Tang, Chitosan nanoparticles as drug delivery carriers for biomedical engineering, J. Chem. Soc. Pakistan. 33 (2011) 929-934.

Google Scholar

[10] V. Zargar, M. Asghari, A. Dashti, A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications, ChemBioEng Reviews. 2 (2015) 204-226.

DOI: 10.1002/cben.201400025

Google Scholar

[11] D.A. Buzinova, A.B. Shipovskaya, Sorption and bactericide properties of chitosan films, Izvestiya of Saratov University. Chemistry. Biology. Ecology. 8 (2008) 42-46.

Google Scholar

[12] Kusmono, I. Abdurrahim, Water sorption, antimicrobial activity, and thermal and mechanical properties of chitosan/clay/glycerol nanocomposite films, Heliyon. 5 (2019) 2342.

DOI: 10.1016/j.heliyon.2019.e02342

Google Scholar

[13] M.S. Zafar, Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers (Basel). 12 (2020) 2299.

DOI: 10.3390/polym12102299

Google Scholar

[14] K.N. Braun, J.N. Mello, R. Rached, A.A. Del Bel Cury, Surface texture and some properties of acrylic resins submitted to chemical polishing, J. Oral. Rehabil. 30 (2003) 91-98.

DOI: 10.1046/j.1365-2842.2003.00997.x

Google Scholar

[15] U. Kedjarune, N. Charoenworaluk, S. Koontongkaew, Release of methyl methacrylate from heat-curved and autopolymerized resins: Cytotoxicity testing related to residual monomer, Aust. Dent. J. 44 (1999) 25-30.

DOI: 10.1111/j.1834-7819.1999.tb00532.x

Google Scholar

[16] А.I. Burua, А.S. Redchuk, E.V. Тkachenko, S.P. Suchilina-Sokolenko, IR spectra and structure of composites based on polyimide 6 filled with arimide, Voprosy Khimii i Khimicheskoi Tekhnologii. 1 (2010) 67-70.

Google Scholar

[17] L.A. Yakovishin, E.V. Tkachenko, Y.V. Tolstenko, Use of ATR IR spectroscopy for analysis of composite material based on phenylone C-1, Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 5 (2019) 230-237.

Google Scholar

[18] T. Ezhevskaya, A. Bublikov, IR Fourier spectrometers with specialized attachments (ATR, IR microscope, etc.). Measurement features, Analytics. 1 (2012) 38-45.

Google Scholar

[19] Voron'ko N., Sokolan N., Kuchina Y., Berestova G., Formation of polyelectrolyte complexes from chitosan and alkaline gelatin, KnE Life Sciences. 5 (2020) 109-119.

Google Scholar

[20] A.V. Volodko, V.N. Davydova, V.P. Glazunov, E.A. Chusovitin, I.V. Sorokina, I.M. Yermak, Soluble polyelectrolyte carrageenan: chitosan complexes and their gastroprotective activity, Achievements in the Life Sciences. 7 (2013) 97-98.

DOI: 10.1016/j.carbpol.2013.10.049

Google Scholar

[21] A.V. Volod'ko, V.N. Davydova, E. Chusovitin, I.V. Sorokina, M.P. Dolgikh, T.G. Tolstikova, S.A. Balagan, N.G. Galkin, I.M. Yermak, Soluble chitosan-carrageenan polyelectrolyte complexes and their gastroprotective activity, Carbohydr. Polym. 101 (2014) 1087-1093.

DOI: 10.1016/j.carbpol.2013.10.049

Google Scholar

[22] S. Yasmeen, M. Kanti Kabiraz, B. Saha, M. Rakibul Qadir, M. Abdul Gafur, S. Md. Masum, Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent, Int. Res. J. Pure Appl. Chem. 10 (2015) 1-14.

DOI: 10.9734/irjpac/2016/23315

Google Scholar

[23] Y. Wu, W. Yang, C. Wang, J. Hu, S. Fu, Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate, Int. J. Pharm. 295 (2005) 235-245.

DOI: 10.1016/j.ijpharm.2005.01.042

Google Scholar

[24] J.N.N. Bueno, E. Corradini, P.R. de Souza, V. de S. Marques, E. Radovanovic, E.C. Muniz, Films based on mixtures of zein, chitosan, and PVA: Development with perspectives for food packaging application, Polymer Testing. 101 (2021) 107279.

DOI: 10.1016/j.polymertesting.2021.107279

Google Scholar

[25] L.A. Kazitsyna, N.B. Kupletskaia, Application of UV, IR, NMR and mass spectroscopy in organic chemistry, Izd-vo MSU, Moscow, (1979).

Google Scholar