Gold Nanoparticles Ablated in Ethanol: Topographical and Morphological Properties for Refractive Index Sensors

Article Preview

Abstract:

The impact of wavelength of the laser on several Topographical and Morphological characteristics of gold nanoparticles (Au NPs) was ablated utilizing pulsed laser ablation in liquid in this work. We employed a gold target with an extra purity to ablate the Nano-particles and a removal of tattoo Nd:YAG Q switching pulsed laser with a 10 Ns duration of pulses, the energy are 1000 mJ, the number of pulses are 600 pulses, and a frequency of 3 Hz to explore the gold NPs' characteristics using TEM and AFM. According to the greatest intensity of shorter wavelengths.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

109-117

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M Tariq, M. A Fakhri, U. Hashim, Fiber Optics for Sensing Applications in a Review, Key Engineering Materials, 911 (2022) 65-76.

DOI: 10.4028/p-k239ba

Google Scholar

[2] F. Ahmed and M. B. G. Jun, Tapered Photonic Crystal Fiber Based Mach-Zehnder Interferometer for Enhanced Refractive Index Sensing, 2015 IEEE Sensors, (2015) 5–8.

DOI: 10.1109/icsens.2015.7370524

Google Scholar

[3] A. L. Abed, W.K. Khalef, E.T. Salim, Synthesis, Characterization and Optoelectronic device application of ZnO nano structure Journal of Physics: Conference Series, 1795(1) (2021) 012031.

DOI: 10.1088/1742-6596/1795/1/012031

Google Scholar

[4] N. K Hassan, M.A Fakhri, A. W Abdulwahhab, U. Hashim, Preparation of Gold Nanoparticles Doped Zinc Oxide Using Reactive Pulsed Laser Ablation in Liquid, Key Engineering Materials, 911 (2022) 65-76.

DOI: 10.4028/p-8lgbrw

Google Scholar

[5] O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber, Phys. Rev. Lett., 024502 (2012) 1–5.

DOI: 10.1103/physrevlett.109.024502

Google Scholar

[6] M. A Fakhri, E. T. Salim, A,. W. Abdulwahhab, U. Hashim, M,. A Minshid, Z. T. Salim, The Effect of Annealing Temperature on Optical and Photolumence Properties of LiNbO 3, Surface Review and Letters 26(10) (2019) 1950068.

DOI: 10.1142/s0218625x19500689

Google Scholar

[7] D. Riabinina, J. Zhang, M. Chaker, and D. Ma, Size Control of Gold Nanoparticles Synthesized by Laser Ablation in Liquid Media, Int. Sch. Res. Netw. ISRN Nanotechnol., 2012 (2012)1–5.

DOI: 10.5402/2012/297863

Google Scholar

[8] M. A. Fakhri, F. G. Khalid, E. T. Salim, Influence of annealing temperatures on Nb2O5nanostructures prepared using Pulsed Laser Deposition method, Journal of Physics: Conference Series, 1795(1) 2021 012063.

DOI: 10.1088/1742-6596/1795/1/012063

Google Scholar

[9] V. Amendola, S. Polizzi, and M. Meneghetti, Laser Ablation Synthesis of Gold Nanoparticles in Organic Solvents, J. Phys. Chem. B, 110(14) (2006) 7232–7237.

DOI: 10.1021/jp0605092

Google Scholar

[10] M.A Fakhri, Z. H Tawfiq, S. A Adnan‏, Gold nanoparticles in ethanol deposited on PCF for refractive index sensors, AIP Conference Proceedings 2213(1) (2020) 020245.

DOI: 10.1063/5.0000213

Google Scholar

[11] M.H. Mohsin, N. H. Numan, E. T. Salim, M. A. Fakhri, Physical properties of sic nanostructure for optoelectronics applications, Journal of Renewable Materials, 9(9) (2021) 1519-1530.

DOI: 10.32604/jrm.2021.015465

Google Scholar

[12] D. Riabinina and M. Chaker, Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media, Nanotechnology, 135603(23) (2012) 1–4.

DOI: 10.1088/0957-4484/23/13/135603

Google Scholar

[13] H. S Ali, M. A Fakhri, An Overview of Au & Photonic Crystal Fiber of Sensors, Materials Science Forum, 1002 (2020) 282-289.

DOI: 10.4028/www.scientific.net/msf.1002.282

Google Scholar

[14] S.F.H. Alhasan, B.A. Bader, E.T. Salim, Surface morphology and roughness of silver oxide prepared employing pulsed laser at optimum laser fluence, Materials Today: Proceedings, 42 (2021) 2845-2848.

DOI: 10.1016/j.matpr.2020.12.732

Google Scholar

[15] X. Yu, P. Shum, S. Member, and G. B. Ren, Highly Sensitive Photonic Crystal Fiber-Based Refractive Index Sensing Using Mechanical Long-Period Grating, IEEE Photonics Technol. Lett., 20(20) (2008) 1688–1690.

DOI: 10.1109/lpt.2008.2003376

Google Scholar

[16] G. Mudhana, K. S. Park, S. Y. Ryu, and B. H. Lee, Fiber-Optic Probe Based on a Bifunctional Lensed Photonic Crystal Fiber for Refractive Index Measurements of Liquids, IEEE Sens. J., 11(5) (2011) 1178–1183.

DOI: 10.1109/jsen.2010.2087323

Google Scholar

[17] L. Z. F. Shi, J. Wang, Y. Zhang, Y. Xia, Refractive Index Sensor Based on S-Tapered Photonic Crystal Fiber, IEEE Photonics Technol. Lett., 25(4) (2013) 344–347.

DOI: 10.1109/lpt.2013.2238623

Google Scholar

[18] M. K. Abood, M Halim A Wahid, E. T. Salim, Jehan Admon, , Niobium Pentoxide thin films employ simple colloidal suspension at low preparation temperature, The European Physical Journal Conferences 162(12) (2017) 01058.

DOI: 10.1051/epjconf/201716201058

Google Scholar

[19] N. K. Hassan,  M. A. Fakhri, E. T. Salim, M. A. Hassan, Gold nano particles based optical fibers for a different sensor in a review Materials Today: Proceedings, 42 (2021) 2769-2772.

DOI: 10.1016/j.matpr.2020.12.719

Google Scholar

[20] Y. C. Tan, Z. Q. Tou, K. K. Chow, and C. C. Chan, Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications, Opt. Express, 23(24) (2015)65–70.

DOI: 10.1364/oe.23.031286

Google Scholar

[21] A. Hossain, N. H. Hai, and F. Ahmed, Highly Sensitive Dual-Core PCF Based Plasmonic Refractive Index Sensor for Low Refractive Index Detection Highly Sensitive Dual-Core PCF Based Plasmonic Refractive Index Sensor for, IEEE Photonics J., 11(5) (2019) 1–9.

DOI: 10.1109/jphot.2019.2931713

Google Scholar

[22] E. G. N. Ezeh and O. G. Ibe, Efficiency of Optical Fiber Communication for Dissemination of Information within the Power System Network., IOSR J. Comput. Eng., 12(3) (2013) 68–75.

DOI: 10.9790/0661-1236875

Google Scholar

[23] T. A. B. and P. S. J. R. J. C. Knight, J. Broeng, Photonic Band Gap Guidance in Optical Fibers, Am. Assoc. Adv. Sci., 282 (2016) 1476–1478.

DOI: 10.1126/science.282.5393.1476

Google Scholar

[24] H. W. L. and G. J. Parker, High aspect ratio submicron silicon pillars fabricated by photoassisted electrochemical etching and oxidation, Appl. Phys. Lett., 67(13) (1995)111–144.

DOI: 10.1063/1.114362

Google Scholar

[25] F. H. Alsultany, S. F. H. Alhasan, & E. T. Salim, Seed Layer-Assisted Chemical Bath Deposition of Cu2O Nanoparticles on ITO-Coated Glass Substrates with Tunable Morphology, Crystallinity, and Optical Properties. J Inorg Organomet Polym 31 (2021) 3749–3759.

DOI: 10.1007/s10904-021-02016-y

Google Scholar

[26] K. Yadav, N. G. Tarr, and and P. D. Waldron, Perforated Mach-Zehnder Interferometer Evanescent Field Sensor in Silicon-on-Insulator, Int. Soc. Opt. Photonics, 6796 (2006) 1–6.

DOI: 10.1117/12.778899

Google Scholar

[27] Z. Tian and and S. S. H. Yam, In-Line Optical Fiber Interferometric Refractive Index Sensors, J. Light. Technol., 27(13) (2008) 2296–2306.

DOI: 10.1109/jlt.2008.2007507

Google Scholar

[28] M. De, T. K. Gangopadhyay, and V. K. Singh, Prospects of Photonic Crystal Fiber as Physical Sensor : An Overview, Sensors, 19(3) (2019) 1–27.

DOI: 10.3390/s19030464

Google Scholar

[29] Z. H Tawfiq, M. A Fakhri, S. A Adnan, Photonic Crystal Fibres PCF for Different Sensors in Review, IOP Conf. Series: Materials Science and Engineering 454(1) (2018) 012173.

DOI: 10.1088/1757-899x/454/1/012173

Google Scholar

[30] D. Kominsky, G. Pickrell, and R. Stolen, Generation of random-hole optical fiber, Opt. Lett., 28(16) (2003) 1409–1411.

DOI: 10.1364/ol.28.001409

Google Scholar

[31] S. A Adnan, Z. H Tawfiq, M. A Fakhri, Gold Nanoparticles in Liquid Based on Photonic Crystal Fiber PCF for Sensors Application, Defect and Diffusion Forum 398 (2020) 23-28.

DOI: 10.4028/www.scientific.net/ddf.398.23

Google Scholar

[32] E. T. Salim, J. A. Saimon, M. K. Abood, M. A. Fakhri, Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis, Optical and Quantum Electronics 52(10) (2020) 463.

DOI: 10.1007/s11082-020-02588-y

Google Scholar

[33] E. T. Salim, Surface morphology and X-ray diffraction analysis for silicon nanocrystal-based heterostructures,Surface Review and Letters, 20(05) (2013) 1350046.

DOI: 10.1142/s0218625x13500467

Google Scholar

[34] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, Recent progress and novel applications of photonic crystal fibers,, Reports Prog. Phys., 024401(73) (2010) 1–21.

DOI: 10.1088/0034-4885/73/2/024401

Google Scholar

[35] M. T. Awayiz, E. T Salim, Photo Voltaic Properties of Ag2O/Si Heterojunction Device: Effect of Substrate Conductivity, Materials Science Forum 1002 (2020) 200-210.

DOI: 10.4028/www.scientific.net/msf.1002.200

Google Scholar

[36] J.C. Baggett, T.M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, Understanding bending losses in holey optical fibers, Opt. Commun., 227 (2003) 317–335.

DOI: 10.1016/j.optcom.2003.09.070

Google Scholar

[37] C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, Sensitivity of photonic crystal fiber modes to temperature , strain and external refractive index," Opt. Express, 16(13) (2008) 9645–9653.

DOI: 10.1364/oe.16.009645

Google Scholar

[38] H. D. Jabbar, M. A. Fakhri,  M. J. Abdulrazzaq, Gallium Nitride -Based Photodiode: A review, Materials Today: Proceedings, 42, 2829-2834, (2021).

DOI: 10.1016/j.matpr.2020.12.729

Google Scholar

[39] H. Liu, J. Yang, X. Qiao, Y. Wang, X. LIU, curvature and temperature measurement based on a few-mode PCF formed M-Z-I and an Embedded FBG., Sensors,17(8) (2017) 1–11.

DOI: 10.3390/s17081725

Google Scholar

[40] M.A. Muhsien, E.T. Salim, and I.R. Agool, Preparation and characterization of (Au/n-Sn O2 /Si O2 /Si/Al) MIS device for optoelectronic application, International Journal of Optics, 2013 (2013) Article ID 756402, 9 pages.

DOI: 10.1155/2013/756402

Google Scholar

[41] B. Sun, Y. Huang, S. Liu, C. Wang, J. He, asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement, Opt. Soc. Am., 23(11) (2015) 14596–14602.

DOI: 10.1364/oe.23.014596

Google Scholar

[42] H. Ademgil and S. Haxha, PCF based sensor with high sensitivity, high birefringence and low cinfinement losses for liquid analyte sensing applications, Sensors, 15(12) (2015) 31833–31842.

DOI: 10.3390/s151229891

Google Scholar

[43] H.S. Ali, M.A. Fakhri, Z. Khalifa, Optical and Structural Properties of the Gold Nanoparticles Ablated by Laser Ablation in Ethanol for Biosensors Journal of Physics: Conference Series 1795(1) (2021) 012065.

DOI: 10.1088/1742-6596/1795/1/012065

Google Scholar

[44] C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, and A. Et, design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing, J. Nanophotonics, 9(1) (2015) 1–7.

DOI: 10.1117/1.jnp.9.093050

Google Scholar

[45] B. Huang, X. Shu, and Y. Du, intensity modulated torsion sensor based on optical fiber reflective lyot filter, Opt. Express Res. Pap., 45(5) (2017) 5081–5090.

DOI: 10.1364/oe.25.005081

Google Scholar

[46] L.Z. Mohammed, M.A. Fakhri, A.K. Abass, Structural and Optical Properties of nanostructured hybrid LiNbO3/Silicon wafer for Fabricating Optical Modulator, Journal of Physics: Conference Series 1795(1) (2021) 012055.

DOI: 10.1088/1742-6596/1795/1/012055

Google Scholar

[47] K. Chah, N. Linze, C. Caucheteur, P. Megret, P. Tihon, temperature insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber, OSA J., 51(25) (2012) 6130–6138.

DOI: 10.1364/ao.51.006130

Google Scholar

[48] T. Dharchana, A. Sivanantharaja, and S. Selvendran, design of pressure sensor using 2D photonic crystal," Adv. Nat. Appl. Sci., 11(7) (2017) 26–30.

Google Scholar

[49] M. A. Hassan, B. M. Al-Nedawe, M. A. Fakhri, Embedded optical fiber link interferometer sensors for snapshot surface inspection using the synthetic wavelength.

DOI: 10.1364/ao.417370

Google Scholar

[50] H. Fu, H. Tam, L. Shao, X. Dong, P. Wai, and A. Et, pressure sensor realized with polarization-maintaining photonic crystal fiber-based sagnac interferometer, Appl. Opt., 47(15) (2008) 2835–2839.

DOI: 10.1364/ao.47.002835

Google Scholar

[51] F.G. Khalid, A.Q. Raheema, Z.S. Alshakhli, M.A. Fakhri‏, Preparation of nano indium oxide for optoelectronics application‏, AIP Conference Proceedings 2213 (1) (2020) 020229.

DOI: 10.1063/5.0000187

Google Scholar