Interaction of C60 with Small Molecules: Adsorption - Inclusion Energy Calculation Using the Density Functional Theory

Article Preview

Abstract:

The interaction between small molecules and fullerene C60 has been analyzed using a quantum-mechanics-based DFT calculation. The small molecules are H2, H2O, NH3, O2, and O3. Each molecule is put inside and outside C60. Interaction of small molecules with C60 is observed by calculating the inclusion and adsorption energies. We find that C60 with H2 and H2O has negative inclusion energies. The inclusion energies of H2 and H2O are -0,02 eV and -0,01 eV, respectively, indicating that H2 and H2O are stabilized inside the C60. For system outside C60, interaction between O2 and O3 with C60 has negative adsorption energies. The adsorption energy of O2 and O3 are-0,07 eV and-2,10 eV, respectively, indicating that O2 and O3 are chemisorbed, which are easily bonded by C60.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1066)

Pages:

135-143

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Wang, G. Yan, X. Zhu, Y. Du, D. Chen, J. Chang, Heterofullerene MC59 (M = B, Si, Al) as Potential Carriers for Hydroxyurea Drug Delivery, Nanomaterials. 11 (2021) 115.

DOI: 10.3390/nano11010115

Google Scholar

[2] T.A. Spurlin and A.A. Gewirth, Effect of C60 on solid supported lipid bilayers, Nano Letters. 7(2) (2007) 531-535.

DOI: 10.1021/nl0622707

Google Scholar

[3] D. Boawan, N. Thomwattana, and J. M. Hill, Encapsulation of C60 fullerenes into single-walled carbon nanotubes: fundamental mechanical principles and conventional applied mathematical modeling, Physical Review B.76 (2007) 8 pages.

DOI: 10.1103/physrevb.76.155411

Google Scholar

[4] Q. Wang, Torsional instability of carbon nanotubes encapsulating C60 fullerenes, Carbon. 47 (2009) 507–512.

DOI: 10.1016/j.carbon.2008.10.035

Google Scholar

[5] S. Yang, S. Guo, S. Bai, E. Khosravi, G.L. Zhao, and D. Bagayoko, Doped C60 study from first principles simulation, Journal of Superconductivity and Novel Magnetism. 23 (2010) 877–880.

DOI: 10.1007/s10948-010-0649-4

Google Scholar

[6] M.D Esrafili, H. Janebi, B-, N-doped and BN codoped C60 heterofullerenes for environmental monitoring of NO and NO2 : a DFT study, Molecular Physics. 118 (2020).

DOI: 10.1080/00268976.2019.1631495

Google Scholar

[7] F. Sebastianelli, M. Xu, Z. Bacic, R. Rawler, and N.J. Turro, Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy, And Comparison with C60. J. Am. Chem. Soc. 132 (2010) 9826 – 9832.

DOI: 10.1021/ja103062g

Google Scholar

[8] K. Kurotobi, Y. Murata, A Single Molecule of Water Encapsulated in Fullerene C60, Science. 333 (2011) 613.

DOI: 10.1126/science.1206376

Google Scholar

[9] S. Dhiman, R. Kumar, K. Dharamvir, DFT Study of Cu and Ag Clusters inside C60, Journal of Molecular Structure. 1100 (2015) 328 – 337.

DOI: 10.1016/j.molstruc.2015.07.044

Google Scholar

[10] M. Medrek, F. Plucinski, A.P. Mazurek, Endohedral Complexes of Fullerene C60 with Small Molecules (H2O, NH3, H2, 2H2, 3H2, 4H2, O2, O3) in the Context of Potential Drug Transporter System, Acta Poloniac Pharmaceutica – Drug Research. 70 (2013) 659 – 665.

Google Scholar

[11] A. Borowik, Y. Prylutskyy, L. Kawelski, O. Kyzyma, L. Bulavin, O. Ivankov, V. Cherepanov, D. Wyrzykowski, R. Kazmierkiewicz, G. Golunski, A. Woziwodzka, M. Evstigneev, U. Ritter, J. Piosik, Does C60 fullerene act as a transporter of small aromatic molecules?, Colloids and Surfaces B: Biointerfaces. 164 (2018) 134-143.

DOI: 10.1016/j.colsurfb.2018.01.026

Google Scholar

[12] A. Montellano, T.D. Ros, A. Bianco, M. Prato, Fullerene C60 as a multifunctional system for drug and gene delivery, Nanoscale. 3 (2011) 4035.

DOI: 10.1039/c1nr10783f

Google Scholar

[13] W. Amalia, P. Nurwantoro, Sholihun, Density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN), Computational Condensed Matter. 18 (2019) 18-e00354.

DOI: 10.1016/j.cocom.2018.e00354

Google Scholar

[14] K. Umam, Sholihun, P. Nurwantoro, A.D. Nugraheni, R.H.S. Budhi, Biaxial strain effects on the electronic properties of silicene: The density-functional-theory-based calculations, Journal of Physics: Conference Series. (2018) 1011(1) 012074.

DOI: 10.1088/1742-6596/1011/1/012074

Google Scholar

[15] Sholihun, H.P. Kadarisman, P. Nurwantoro, Density-functional-theory calculations of formation energy of the nitrogen-doped diamond, Indonesian Journal of Chemistry. 18(4) (2018) 749–754.

DOI: 10.22146/ijc.26785

Google Scholar

[16] PHASE, https://azuma.nims.go.jp/cms1.

Google Scholar

[17] NIST Chemistry Webbook, http://webbook.nist.gov/chemistry.

Google Scholar

[18] H. Dodziuk, G. Dolgonos, O. Lukin, Molecular mechanics study of endohedral fullerene complexes with small molecules, Carbon. 39 (2001) 1907-1911.

DOI: 10.1016/s0008-6223(00)00323-7

Google Scholar

[19] T. Korona, H. Dodziuk, Small Molecules in C60 and C70: Which Complexes Could Be Stabilized?, J. Chem. Theory Comput. 7 (2011) 1476–1483.

DOI: 10.1021/ct200111a

Google Scholar

[20] L. Tsetseris, S.T. Pantelides, Oxygen and water-related impurities in C60 crystals: A density-functional theory study, Physical Review B. 82 (2010).

Google Scholar

[21] S. Sinthika, E.M. Kumar, V.J. Surya, Y. Kawazoe, N. Park, K. Iyakuti, R. Thapa, Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study, Scientific Reports. 5 (2015) 17460.

DOI: 10.1038/srep17460

Google Scholar