[1]
C. Fernández, M. S. Larrechi, and M. P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents,, TrAC - Trends Anal. Chem., vol. 29, no. 10, p.1202–1211, 2010,.
DOI: 10.1016/j.trac.2010.07.011
Google Scholar
[2]
J. L. Wang and L. J. Xu, Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application,, Crit. Rev. Environ. Sci. Technol., vol. 42, no. 3, p.251–325, 2012,.
Google Scholar
[3]
N. Daneshvar, D. Salari, and A. R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters,, J. Photochem. Photobiol. A Chem., vol. 157, no. 1, p.111–116, 2003,.
DOI: 10.1016/s1010-6030(03)00015-7
Google Scholar
[4]
Y. Deng and R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment,, Curr. Pollut. Reports, vol. 1, no. 3, p.167–176, 2015,.
DOI: 10.1007/s40726-015-0015-z
Google Scholar
[5]
K.Y. Foo and B.H. Hameed, An overview of dye removal via activated carbon adsorption process,, Desalin. Water Treat., vol.19, no. 1-3, pp.255-274, 2010,.
DOI: 10.5004/dwt.2010.1214
Google Scholar
[6]
W. C. Lin, W. D. Yang, and S. Y. Jheng, Photocatalytic degradation of dyes in water using porous nanocrystalline titanium dioxide,, J. Taiwan Inst. Chem. Eng., vol. 43, no. 2, p.269–274, 2012,.
DOI: 10.1016/j.jtice.2011.10.010
Google Scholar
[7]
J. L. Daristotle, A. M. Behrens, A. D. Sandler, and P. Kofinas, A Review of the Fundamental Principles and Applications of Solution Blow Spinning,, ACS Appl. Mater. Interfaces, vol. 8, no. 51, p.34951–34963, 2016,.
DOI: 10.1021/acsami.6b12994
Google Scholar
[8]
G. C. Dadol et al., Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications,, Mater. Today Commun., vol. 25, no. June, p.101656, 2020,.
DOI: 10.1016/j.mtcomm.2020.101656
Google Scholar
[9]
J. M. Salva, D. D. Gutierrez, L. A. Ching, P. M. Ucab, H. Cascon, and N. P. Tan, Solution Blow Spinning (SBS)-Assisted Synthesis of Well-defined Carboxymethyl Cellulose (CMC) Nanowhiskers,, no. Cmc, (2018).
DOI: 10.1088/1361-6528/aae2fc
Google Scholar
[10]
N. P. B. Tan, L. K. Cabatingan, and K. J. A. Lim, Synthesis of TiO2 Nanofiber by Solution Blow Spinning (SBS) Method,, Key Eng. Mater., vol. 858 KEM, p.122–128, 2020,.
DOI: 10.4028/www.scientific.net/kem.858.122
Google Scholar
[11]
J. S. Im, M. Il Kim, and Y. S. Lee, Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation,, Mater. Lett., vol. 62, no. 21–22, p.3652–3655, 2008,.
DOI: 10.1016/j.matlet.2008.04.019
Google Scholar
[12]
H. S. Zakria, M. H. D. Othman, R. Kamaludin, S. H. Sheikh Abdul Kadir, T. A. Kurniawan, and A. Jilani, Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity,, RSC Adv., vol. 11, no. 12, p.6985–7014, 2021,.
DOI: 10.1039/d0ra10964a
Google Scholar
[13]
N. Guettaï and H. Ait Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study,, Desalination, vol. 185, no. 1–3, p.427–437, 2005,.
DOI: 10.1016/j.desal.2005.04.048
Google Scholar
[14]
I. Poulios and I. Tsachpinis, Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides,, J. Chem. Technol. Biotechnol., vol. 74, no. 4, p.349–357, 1999,.
DOI: 10.1002/(sici)1097-4660(199904)74:4<349::aid-jctb5>3.0.co;2-7
Google Scholar
[15]
C. C. Liu, Y. H. Hsieh, P. F. Lai, C. H. Li, and C. L. Kao, Photodegradation treatment of azo dye wastewater by UV/TiO2 process,, Dye. Pigment., vol. 68, no. 2–3, p.191–195, 2006,.
DOI: 10.1016/j.dyepig.2004.12.002
Google Scholar
[16]
R. J. Davis, J. L. Gainer, G. O'Neal, and I.-W. Wu, Photocatalytic decolorization of wastewater dyes,, Water Environ. Res., vol. 66, no. 1, p.50–53, 1994,.
DOI: 10.2175/wer.66.1.8
Google Scholar
[17]
K. M. Reza, A. Kurny, and F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review,, Appl. Water Sci., vol. 7, no. 4, p.1569–1578, 2017,.
DOI: 10.1007/s13201-015-0367-y
Google Scholar
[18]
J. Bandara, V. Nadtochenko, J. Kiwi, and C. Pulgarin, Dynamics of oxidant addition as a parameter in the modeling of dye mineralization (Orange II) via advanced oxidation technologies,, Water Sci. Technol., vol. 35, no. 4, p.87–93, 1997,.
DOI: 10.2166/wst.1997.0093
Google Scholar
[19]
K. V. Kumar, K. Porkodi, and F. Rocha, Langmuir-Hinshelwood kinetics - A theoretical study,, Catal. Commun., vol. 9, no. 1, p.82–84, 2008,.
DOI: 10.1016/j.catcom.2007.05.019
Google Scholar
[20]
K. Mondal, Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications,, Inventions, vol. 2, no. 2, p.1–29, 2017,.
DOI: 10.3390/inventions2020009
Google Scholar
[21]
M. D. Argyle and C. H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A review,, Catalysts, vol. 5, no. 1, p.145–269, 2015,.
DOI: 10.3390/catal5010145
Google Scholar
[22]
I. Horovitz, I. Horovitz, V. Gitis, D. Avisar, and H. Mamane, Ceramic-based photocatalytic membrane reactors for water treatment - Where to next?,, Rev. Chem. Eng., vol. 36, no. 5, p.593–622, 2020,.
DOI: 10.1515/revce-2018-0036
Google Scholar
[23]
R. Molinari, C. Lavorato, and P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review,, Catal. Today, vol. 1, no. 1, p.144–164, 2016,.
DOI: 10.1016/j.cattod.2016.06.047
Google Scholar
[24]
P. Argurio, E. Fontananova, R. Molinari, and E. Drioli, Photocatalytic membranes in photocatalytic membrane reactors,, Processes, vol. 6, no. 9, 2018,.
DOI: 10.3390/pr6090162
Google Scholar