[1]
Arun Kumar Sharma, Rakesh Bhandari, Amit Aherwar, Rūta Rimašauskienė, Camelia Pinca-Bretotean, A study of advancement in application opportunities of aluminum metal matrix composites, Materials Today: Proceedings, 26 (2020) 2419-2424.
DOI: 10.1016/j.matpr.2020.02.516
Google Scholar
[2]
S. Rajasekaran, N. K. Udayashankar, Jagannath Nayak, T4 and T6 Treatment of 6061 Al-15 Vol. % SiCP Composite,, International Scholarly Research Notices, 374719 (2012) 1-5.
DOI: 10.5402/2012/374719
Google Scholar
[3]
Dev Srivyas, Pranav; S. Charoo, M. Aluminum metal matrix composites a review of reinforcement; mechanical and tribological behavior. International Journal of Engineering and Technology, 7 (2018) 117-122.
DOI: 10.14419/ijet.v7i2.4.13020
Google Scholar
[4]
Rajasekaran, S., Udayashankar, N.K. & Nayak, J. Effect of heat treatment on pitting corrosion resistance of 6061 Al/SiCP composite coated by the cerium oxide film in 3.5 N NaCl solution. Surf. Engin. Appl.Electrochem, 47 (2011) 176.
DOI: 10.3103/s106837551102013x
Google Scholar
[5]
Mohammad Azadi, Mohammad Zomorodipour, Abdoulhossein Fereidoon, Sensitivity analysis of mechanical properties and ductile/brittle behaviors in aluminum‐silicon alloy to loading rate and nano‐particles, considering interaction effects, Engineering Reports, (2020).
DOI: 10.1002/eng2.12341/v3/response1
Google Scholar
[6]
Muhammad D. Hayat, Harshpreet Singh, Zhen He, Peng Cao,Titanium metal matrix composites: An overview, Composites Part A: Applied Science and Manufacturing, 121 (2019) 418-438.
DOI: 10.1016/j.compositesa.2019.04.005
Google Scholar
[7]
Rajak, Dipen & Pagar, Durgesh & Kumar, Ravinder & Pruncu, Catalin. (2019). Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8 (2019).
DOI: 10.1016/j.jmrt.2019.09.068
Google Scholar
[8]
Dragone T C, Nix W D. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals. Acta. Met. 38 (1990) (1941).
DOI: 10.1016/0956-7151(90)90306-2
Google Scholar
[9]
Huang, Yuanding & Froyen, L. & Wevers, Martine.. Quality Control and Nondestructive Tests in Metal Matrix Composites. Journal of Nondestructive Evaluation. 20 (2001) 113-132.
DOI: 10.1023/a:1013503005743
Google Scholar
[10]
Meola C. Nondestructive Testing in Composite Materials. Applied Sciences. 10(15) (2020) 5123.
DOI: 10.3390/app10155123
Google Scholar
[11]
Hull, D.; Clyne, T.W. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, (2019).
Google Scholar
[12]
Karl U. Kainer. Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).
DOI: 10.1080/10426910701884301
Google Scholar
[13]
L Lorca, Javier. Void Formation in Metal Matrix Composites, (2017).
Google Scholar
[14]
Rajasekaran Saminathan, Yahya Ali Fageehi, Gunasekaran Venugopal, Topographical responses of defense grade 7075 Al/TiO2 composite in Red sea environment, Materials Today: Proceedings, 46 (2021) 2445-2449.
DOI: 10.1016/j.matpr.2021.01.358
Google Scholar
[15]
Nondestructive Testing of Composites (Polymer- and Metal-Matrix Composites), Nondestructive Evaluation of Materials, Vol 17, ASM Handbook, Edited By Aquil Ahmad, Leonard J. Bond, ASM International, (2018) 631–658.
DOI: 10.31399/asm.hb.v17.a0006478
Google Scholar