[1]
M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change. Sens. Actuat. B, 96 (2003) 589-595.
DOI: 10.1016/s0925-4005(03)00645-2
Google Scholar
[2]
R. Kalidoss, S. Umapathy, An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator, Biomed. Microdevices., 22 (2020) 1-9.
DOI: 10.1007/s10544-019-0448-z
Google Scholar
[3]
E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri and G. Sberveglieri, Metal oxide nanoscience and nanotechnology for chemical sensors.Sens. Actuat. B, 179 (2013) 3-20.
DOI: 10.1016/j.snb.2012.10.027
Google Scholar
[4]
R. Kalidoss, S. Umapathy, A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype, J. Breath Res., 13 (2019) 036008.
DOI: 10.1088/1752-7163/ab09ae
Google Scholar
[5]
R. Kalidoss, S. Umapathy, U. R. Thirunavukkarasu, A breathalyzer for the assessment of chronic kidney disease patients' breathprint: Breath flow dynamic simulation on the measurement chamber and experimental investigation, Biomed Signal Process Control., 70 (2021) 103060.
DOI: 10.1016/j.bspc.2021.103060
Google Scholar
[6]
R. Kalidoss, S. Umapathy, R. Kothalam, U. Sakthivelu, Adsorption kinetics feature extraction from breathprint obtained by graphene based sensors for diabetes diagnosis, J. of Breath Res., 15 (2020) 016005.
DOI: 10.1088/1752-7163/abc09b
Google Scholar
[7]
R. Kalidoss, R. Kothalam, A. Manikandan, S. K. Jaganathan, A. Khan, A. M. Asiri, Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites, Rsc Adv., 11 (2021) 21216-21234.
DOI: 10.1039/d1ra02554f
Google Scholar
[8]
Y. Sivalingam, G. Magna, R. Kalidoss, S. Murugan, D. Chidambaram, V. NutatapaliS. V. Jayaraman, R. Paolesse, C. Di Natale, Combinatorial selectivity with an array of phthalocyanines functionalized TiO2/ZnO heterojunction thin film sensors, Nanotech., 33 (2021) 075503.
DOI: 10.1088/1361-6528/ac378a
Google Scholar
[9]
R Kalidoss, V. J. Surya, Y. Sivalingam, Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis, Curr. Anal. Chem., 18 (2022) 563-576.
DOI: 10.2174/1573411017999201125203955
Google Scholar
[10]
D. Chidambaram, R. Kalidoss, K. Pushparaj, V. J. Surya, Y. Sivalingam, Post-deposition annealing influences of gas adsorption on semi-vertical β-FeOOH nanorods at room temperature: A scanning kelvin probe analysis, Mater. Sci. Eng. B., 280 (2022) 115694.
DOI: 10.1016/j.mseb.2022.115694
Google Scholar
[11]
Zhao, J.; Huo, L. H.; Gao, S.; Zhao, H.; Zhao, J. G. Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating.Sens. Actuat. B, 115 (2006) 460-464.
DOI: 10.1016/j.snb.2005.10.024
Google Scholar
[12]
Z. Jing and S. Wu, Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3 based gas sensors.Mater. Lett, 60 (2006) 952-956.
DOI: 10.1016/j.matlet.2005.10.051
Google Scholar
[13]
C. Sun, G. Maduraiveeran and P. Dutta, Nitric oxide sensors using combination of p-and n-type semiconducting oxides and its application for detecting NO in human breath.Sens. Actuat. B, 186 (2013) 117-125.
DOI: 10.1016/j.snb.2013.05.090
Google Scholar
[14]
F. Shao, M. W. G. Hoffmann, J. D. Prades, R. Zamani, J. Arbiol, J. R. Morante, E. Varechkina, M. Rumyantseva, A. Gaskov, I. Giebelhaus, T. Fischer, S.Mathur and F. Hernandez-Ramirez, Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection.Sens. Actuat. B, 181 (2013) 130-135.
DOI: 10.1016/j.snb.2013.01.067
Google Scholar
[15]
D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, A. Devi and R. A. Fischer, Co3O4 /ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications.ACS Appl. Mat. Interf., 4 (2012) 928-934.
DOI: 10.1021/am201591w
Google Scholar
[16]
M. R. Yu, R. J. Wu and M. Chavali, Effect of Ptloading in ZnO–CuO heterojunction material sensing carbon monoxide at room temperature. Sens. Actuat. B, 153 (2011) 321-328.
DOI: 10.1016/j.snb.2010.09.071
Google Scholar
[17]
S. J. Kim, C. W. Na, I. S. Hwang and J. H. Lee, One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection.Sens. Actuat. B, 168 (2012) 83-89.
DOI: 10.1016/j.snb.2012.01.045
Google Scholar
[18]
J. Huang, Y. Dai, C. Gu, Y. Sun and J. Liu, Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property.J. Alloys Compd., 575 (2013) 115-122.
DOI: 10.1016/j.jallcom.2013.04.094
Google Scholar
[19]
J. H. Yu and G. M. Choi, Electrical and CO gas-sensing properties of ZnO/SnO2 hetero-contact. Sens. Actuat. B, 61 (1999) 59-67.
DOI: 10.1016/s0925-4005(99)00280-4
Google Scholar
[20]
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Graphene: the new two‐dimensional nanomaterial. Angew. Chem. Int. Ed., 48 (2009) 7752-7777.
DOI: 10.1002/anie.200901678
Google Scholar
[21]
R. Kalidoss, S. Umapathy, Y. Sivalingam, An investigation of GO-SnO2-TiO2 ternary nanocomposite for the detection of acetone in diabetes mellitus patient's breath, Appl. Surf. Sci., 449 (2018) 677-684.
DOI: 10.1016/j.apsusc.2017.12.090
Google Scholar
[22]
R. Kalidoss, S. Umapathy, R. Anandan, V. Ganesh, Y. Sivalingam, Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO2 Binary Nanocomposite for Detection of Acetone in Exhaled Breath, Anal. Chem., 91 (2019) 5116-5124.
DOI: 10.1021/acs.analchem.8b05670
Google Scholar
[23]
S. Mao, G. Lu and J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A, 2 (2014) 5573-5579.
Google Scholar
[24]
W. Yuan and G. Shi, Graphene-based gas sensors.J. Mater. Chem. A, 1 (2013) 10078-10091.
Google Scholar