Design of Improved Acetone Gas Sensors Based on ZnO Doped rGO Nanosheets

Article Preview

Abstract:

To meet future social and environmental objectives for diagnosis of human diseases has offered to develop the proficient gas sensors devices with higher selectivity and sensitivity. For the production of ZnO doped reduced graphene oxide (ZnO doped rGO) nanocomposite, a one-pot hydrothermal approach. The morphological, structural and composition of nanocomposite were investigated to confirm ZnO nanoparticle effectively doped on rGO nanosheets. The nanocomposite has exhibited a superior acetone sensing characteristics. Furthermore, the nanocomposite has a high selectivity for acetone vapour. These findings emphasise advantageous synergistic effects among ZnO and excellent rGO sheet substrate properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1068)

Pages:

55-61

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change. Sens. Actuat. B, 96 (2003) 589-595.

DOI: 10.1016/s0925-4005(03)00645-2

Google Scholar

[2] R. Kalidoss, S. Umapathy, An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator, Biomed. Microdevices., 22 (2020) 1-9.

DOI: 10.1007/s10544-019-0448-z

Google Scholar

[3] E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri and G. Sberveglieri, Metal oxide nanoscience and nanotechnology for chemical sensors.Sens. Actuat. B, 179 (2013) 3-20.

DOI: 10.1016/j.snb.2012.10.027

Google Scholar

[4] R. Kalidoss, S. Umapathy, A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype, J. Breath Res., 13 (2019) 036008.

DOI: 10.1088/1752-7163/ab09ae

Google Scholar

[5] R. Kalidoss, S. Umapathy, U. R. Thirunavukkarasu, A breathalyzer for the assessment of chronic kidney disease patients' breathprint: Breath flow dynamic simulation on the measurement chamber and experimental investigation, Biomed Signal Process Control., 70 (2021) 103060.

DOI: 10.1016/j.bspc.2021.103060

Google Scholar

[6] R. Kalidoss, S. Umapathy, R. Kothalam, U. Sakthivelu, Adsorption kinetics feature extraction from breathprint obtained by graphene based sensors for diabetes diagnosis, J. of Breath Res., 15 (2020) 016005.

DOI: 10.1088/1752-7163/abc09b

Google Scholar

[7] R. Kalidoss, R. Kothalam, A. Manikandan, S. K. Jaganathan, A. Khan, A. M. Asiri, Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites, Rsc Adv., 11 (2021) 21216-21234.

DOI: 10.1039/d1ra02554f

Google Scholar

[8] Y. Sivalingam, G. Magna, R. Kalidoss, S. Murugan, D. Chidambaram, V. NutatapaliS. V. Jayaraman, R. Paolesse, C. Di Natale, Combinatorial selectivity with an array of phthalocyanines functionalized TiO2/ZnO heterojunction thin film sensors, Nanotech., 33 (2021) 075503.

DOI: 10.1088/1361-6528/ac378a

Google Scholar

[9] R Kalidoss, V. J. Surya, Y. Sivalingam, Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis, Curr. Anal. Chem., 18 (2022) 563-576.

DOI: 10.2174/1573411017999201125203955

Google Scholar

[10] D. Chidambaram, R. Kalidoss, K. Pushparaj, V. J. Surya, Y. Sivalingam, Post-deposition annealing influences of gas adsorption on semi-vertical β-FeOOH nanorods at room temperature: A scanning kelvin probe analysis, Mater. Sci. Eng. B., 280 (2022) 115694.

DOI: 10.1016/j.mseb.2022.115694

Google Scholar

[11] Zhao, J.; Huo, L. H.; Gao, S.; Zhao, H.; Zhao, J. G. Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating.Sens. Actuat. B, 115 (2006) 460-464.

DOI: 10.1016/j.snb.2005.10.024

Google Scholar

[12] Z. Jing and S. Wu, Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3 based gas sensors.Mater. Lett, 60 (2006) 952-956.

DOI: 10.1016/j.matlet.2005.10.051

Google Scholar

[13] C. Sun, G. Maduraiveeran and P. Dutta, Nitric oxide sensors using combination of p-and n-type semiconducting oxides and its application for detecting NO in human breath.Sens. Actuat. B, 186 (2013) 117-125.

DOI: 10.1016/j.snb.2013.05.090

Google Scholar

[14] F. Shao, M. W. G. Hoffmann, J. D. Prades, R. Zamani, J. Arbiol, J. R. Morante, E. Varechkina, M. Rumyantseva, A. Gaskov, I. Giebelhaus, T. Fischer, S.Mathur and F. Hernandez-Ramirez, Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection.Sens. Actuat. B, 181 (2013) 130-135.

DOI: 10.1016/j.snb.2013.01.067

Google Scholar

[15] D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, A. Devi and R. A. Fischer, Co3O4 /ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications.ACS Appl. Mat. Interf., 4 (2012) 928-934.

DOI: 10.1021/am201591w

Google Scholar

[16] M. R. Yu, R. J. Wu and M. Chavali, Effect of Ptloading in ZnO–CuO heterojunction material sensing carbon monoxide at room temperature. Sens. Actuat. B, 153 (2011) 321-328.

DOI: 10.1016/j.snb.2010.09.071

Google Scholar

[17] S. J. Kim, C. W. Na, I. S. Hwang and J. H. Lee, One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection.Sens. Actuat. B, 168 (2012) 83-89.

DOI: 10.1016/j.snb.2012.01.045

Google Scholar

[18] J. Huang, Y. Dai, C. Gu, Y. Sun and J. Liu, Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property.J. Alloys Compd., 575 (2013) 115-122.

DOI: 10.1016/j.jallcom.2013.04.094

Google Scholar

[19] J. H. Yu and G. M. Choi, Electrical and CO gas-sensing properties of ZnO/SnO2 hetero-contact. Sens. Actuat. B, 61 (1999) 59-67.

DOI: 10.1016/s0925-4005(99)00280-4

Google Scholar

[20] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Graphene: the new two‐dimensional nanomaterial. Angew. Chem. Int. Ed., 48 (2009) 7752-7777.

DOI: 10.1002/anie.200901678

Google Scholar

[21] R. Kalidoss, S. Umapathy, Y. Sivalingam, An investigation of GO-SnO2-TiO2 ternary nanocomposite for the detection of acetone in diabetes mellitus patient's breath, Appl. Surf. Sci., 449 (2018) 677-684.

DOI: 10.1016/j.apsusc.2017.12.090

Google Scholar

[22] R. Kalidoss, S. Umapathy, R. Anandan, V. Ganesh, Y. Sivalingam, Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO2 Binary Nanocomposite for Detection of Acetone in Exhaled Breath, Anal. Chem., 91 (2019) 5116-5124.

DOI: 10.1021/acs.analchem.8b05670

Google Scholar

[23] S. Mao, G. Lu and J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A, 2 (2014) 5573-5579.

Google Scholar

[24] W. Yuan and G. Shi, Graphene-based gas sensors.J. Mater. Chem. A, 1 (2013) 10078-10091.

Google Scholar