A Review on Exploration of Magnesium Matrix Composites

Article Preview

Abstract:

A growing demand for advanced composite materials as well as diverse design requirements offering significant weight savings in comparison to conventional materials have all contributed to a growing interest in composite materials. This review paper is focused on Powder Metallurgy (P/M) process to fabricate magnesium based metal matrix composites. The excellent oxidation and corrosion resistance and low density of Silicon carbide have made it a popular material even at very high temperatures. Despite their very high specific strength, magnesium matrix composites possess excellent cast ability, good damping capabilities, and greater machinability. Therefore, this review paper discusses the importance, fabrication, and properties of magnesium matrix composite materials for industry applications. An examination of the properties of recently produced magnesium matrix composites by various researchers is presented in this review paper.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1068)

Pages:

63-70

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Mohanavel, and M. Ravichandran. Influence of AlN particles on microstructure, mechanical and tribological behaviour in AA6351 aluminum alloy., Materials Research Express vol. 6. Issue. 10, 106557, (2019).

DOI: 10.1088/2053-1591/ab39b0

Google Scholar

[2] M. L. Bharathi, S. Adarsh Rag, L. Chitra, R. Mohammed Ashick, Vikas Tripathi, Srinivasan Suresh Kumar, Sami Al Obaid, Saleh Alfarraj, Mohanraj Murugesan, Ishwarya Komalnu Raghavan, Investigation on Wear Characteristics of AZ91D/Nanoalumina Composites,, Journal of Nanomaterials, vol. 2022, Article ID 2158516, 9 pages, 2022. https://doi.org/10.1155/2022/2158516.

DOI: 10.1155/2022/2158516

Google Scholar

[3] Frank Witte, Norbert Hort, Carla Vogt, Smadar Cohen, Karl Ulrich Kainer, RegineWillumeit, Frank Feyerabend, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science 12 (2008) 63–72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[4] Čapek J, Vojtěch D. Powder Metallurgical Techniques for Fabrication of Biomaterials. Manufacturing Technology. 2015;15(6):964-969.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/6/964

Google Scholar

[5] Muhammet Emre Turan, Yavuz Sun, Fatih Aydin, Huseyin Zengin, Yunus Turen, Hayrettin Ahlatci, Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites, Materials Chemistry and Physics, Volume 218, 2018, Pages 182-188, https://doi.org/10.1016/j.matchemphys.2018.07.050.

DOI: 10.1016/j.matchemphys.2018.07.050

Google Scholar

[6] Vijay Kumar Bommala, Mallarapu Gopi Krishna, Ch Tirumala Rao, Magnesium matrix composites for biomedical applications: A review, Journal of Magnesium and Alloys, Volume 7, Issue 1, 2019, Pages 72-79, https://doi.org/10.1016/j.jma.2018.11.001.

DOI: 10.1016/j.jma.2018.11.001

Google Scholar

[7] J. Jeffrey, S. S. Kumar, P. Hariharan, M. Kamesh, and A. M. Raj, Production and assessment of AZ91 reinforced with nano SiC through stir casting process,, Materials Science Forum, vol. 1048, p.9–14, (2022).

DOI: 10.4028/www.scientific.net/msf.1048.9

Google Scholar

[8] Alireza Vahid, Peter Hodgson, Yuncang Li, Reinforced magnesium composites by metallic particles for biomedical applications, Materials Science and Engineering: A, Volume 685, 2017, Pages 349-357, , https://doi.org/10.1016/j.msea.2017.01.017.

DOI: 10.1016/j.msea.2017.01.017

Google Scholar

[9] Weijie Ren, Jiaji Li, Renlong Xin, Texture dependent shifting behavior of neutral layer in bending of magnesium alloys, Scripta Materialia, Volume 170, 2019, Pages 6-10 https://doi.org/10.1016/j.scriptamat.2019.05.028.

DOI: 10.1016/j.scriptamat.2019.05.028

Google Scholar

[10] J.A. Jeffrey, S.S. Kumar, V.A. Roseline, A.L. Mary, and D. Santhosh, Contriving and assessment of magnesium alloy composites augmented with boron carbide VIA liquid metallurgy route,, Materials Science Forum, vol. 1048, p.3–8, (2022).

DOI: 10.4028/www.scientific.net/msf.1048.3

Google Scholar

[11] Jianzhong Zhou, Jiale Xu, Shu Huang, Zengrong Hu, Xiankai Meng, Xu Feng, Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy, Surface and Coatings Technology, Volume 309, 2017, Pages 212-219, https://doi.org/10.1016/j.surfcoat.2016.11.077.

DOI: 10.1016/j.surfcoat.2016.11.077

Google Scholar

[12] P. Gunde, A.C. Hänzi, A.S. Sologubenko, P.J. Uggowitzer, High-strength magnesium alloys for degradable implant applications, Materials Science and Engineering: A, Volume 528, Issue 3, 2011, Pages 1047-1054, https://doi.org/10.1016/j.msea.2010.09.068.

DOI: 10.1016/j.msea.2010.09.068

Google Scholar

[13] Longchuan Li, Jiacheng Gao, Yong Wang, Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid, Surface and Coatings Technology, Volume 185, Issue 1, 2004, Pages 92-98, https://doi.org/10.1016/j.surfcoat.2004.01.004.

DOI: 10.1016/j.surfcoat.2004.01.004

Google Scholar

[14] M. Carboneras, L.S. Hernández, J.A. del Valle, M.C. García-Alonso, M.L. Escudero, Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium, Journal of Alloys and Compounds, Volume 496, Issues 1–2, 2010, Pages 442-448, https://doi.org/10.1016/j.jallcom.2010.02.043.

DOI: 10.1016/j.jallcom.2010.02.043

Google Scholar

[15] Chen Xianhua, Geng Yuxiao, Pan Fusheng, Research Progress in Magnesium Alloys as Functional Materials, Rare Metal Materials and Engineering, Volume 45, Issue 9, 2016, Pages 2269-2274, https://doi.org/10.1016/S1875-5372(17)30015-2.

DOI: 10.1016/s1875-5372(17)30015-2

Google Scholar

[16] V. Mohanavel, K. Rajan, M. Ravichandran, Synthesis, characterization and properties of stir cast AA6351-aluminium nitride (AlN) composites. Journal of Materials Research, 31(24), 3824-3831, 2018,.

DOI: 10.1557/jmr.2016.460

Google Scholar

[17] Jiang Q. C., Wang H. Y., Ma B. X., Wang Y. and Zhao F. 2005 Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy Journal of Alloys and Compounds 386 177-181.

DOI: 10.1016/j.jallcom.2004.06.015

Google Scholar

[18] Muhammet Emre Turan, Yavuz Sun, Yasin Akgul, Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy, Journal of Alloys and Compounds, Volume 740, 2018, Pages 1149-1158, https://doi.org/10.1016/j.jallcom.2018.01.103.

DOI: 10.1016/j.jallcom.2018.01.103

Google Scholar

[19] Tun, K.S.; Gupta, M. Improving mechanical properties of magnesium using nano-Yttria reinforcement and microwave assisted powder metallurgy method. Compos. Sci. Technol. 2007, 67, 2657–2664.

DOI: 10.1016/j.compscitech.2007.03.006

Google Scholar

[20] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma, Y. Wang, Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites, Materials Science and Engineering: A, Volume 372, Issues 1–2, 2004, Pages 109-114, https://doi.org/10.1016/j.msea. 2003.10.250.

DOI: 10.1016/j.msea.2003.10.250

Google Scholar

[21] Y.L. Xi, D.L. Chai, W.X. Zhang, J.E. Zhou, Titanium alloy reinforced magnesium matrix composite with improved mechanical properties, Scripta Materialia, Volume 54, Issue 1, 2006, Pages 19-23, https://doi.org/10.1016/j.scriptamat.2005.09.020.

DOI: 10.1016/j.scriptamat.2005.09.020

Google Scholar

[22] Alireza Vahid, Peter Hodgson, Yuncang Li, Reinforced magnesium composites by metallic particles for biomedical applications, Materials Science and Engineering: A, Volume 685, 2017, Pages 349-357, https://doi.org/10.1016/j.msea.2017.01.017.

DOI: 10.1016/j.msea.2017.01.017

Google Scholar

[23] W.Z. Chen, X. Wang, E.D. Wang, Z.Y. Liu, L.X. Hu, Texture dependence of uniform elongation for a magnesium alloy, Scripta Materialia, Volume 67, Issue 10, 2012, Pages 858-861, https://doi.org/10.1016/j.scriptamat.2012.08.009.

DOI: 10.1016/j.scriptamat.2012.08.009

Google Scholar

[24] Murad Ali, M.A. Hussein, N. Al-Aqeeli, Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, Journal of Alloys and Compounds, Volume 792, 2019, Pages 1162-1190, https://doi.org/10.1016/j.jallcom. 2019.04.080.

DOI: 10.1016/j.jallcom.2019.04.080

Google Scholar

[25] K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, K. Wu, Magnesium matrix composite reinforced by nanoparticles – A review, Journal of Magnesium and Alloys, Volume 9, Issue 1, 2021, Pages 57-77, https://doi.org/10.1016/j.jma.2020.08.018.

DOI: 10.1016/j.jma.2020.08.018

Google Scholar

[26] Xuenan Gu, Yufeng Zheng, Yan Cheng, Shengping Zhong, Tingfei Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, Volume 30, Issue 4, 2009, Pages 484-498, https://doi.org/10.1016/j.biomaterials.2008.10.021.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[27] Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy, Journal of Alloys and Compounds, Volume 386, Issues 1–2, 2005, Pages 177-181, https://doi.org/10.1016/j.jallcom. 2004.06.015.

DOI: 10.1016/j.jallcom.2004.06.015

Google Scholar

[28] Guangyao Xiong, Yanjiao Nie, Dehui Ji, Jing Li, Chunzhi Li, Wei Li, Yong Zhu, Honglin Luo, Yizao Wan, Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering, Current Applied Physics, Volume 16, Issue 8, 2016, Pages 830-836, https://doi.org/10.1016/j.cap.2016.05.004.

DOI: 10.1016/j.cap.2016.05.004

Google Scholar

[29] Ehsan Ghasali, Masoud Alizadeh, Morteza Niazmand, Touradj Ebadzadeh, Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering, Journal of Alloys and Compounds, Volume 697, 2017, Pages 200-207, https://doi.org/10.1016/j.jallcom.2016.12.146.

DOI: 10.1016/j.jallcom.2016.12.146

Google Scholar

[30] Jinsun Liao, Naotsugu Yamamoto, Kazuhiro Nakata, Gas tungsten arc welding of fine-grained AZ31B magnesium alloys made by powder metallurgy, Materials & Design (1980-2015), Volume 56, 2014, Pages 460-467, https://doi.org/10.1016/j.matdes.2013.11.061.

DOI: 10.1016/j.matdes.2013.11.061

Google Scholar

[31] T. Schubert, Ł. Ciupiński, W. Zieliński, A. Michalski, T. Weißgärber, B. Kieback, Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications, Scripta Materialia, Volume 58, Issue 4, 2008, Pages 263-266, https://doi.org/10.1016/j.scriptamat.2007.10.011.

DOI: 10.1016/j.scriptamat.2007.10.011

Google Scholar

[32] B.P. Dileep, V. Ravikumar, H.R. Vital, Mechanical and Corrosion Behavior of Al-Ni-Sic Metal Matrix Composites by Powder Metallurgy, Materials Today: Proceedings, Volume 5, Issue 5, Part 2, 2018, Pages 12257-12264, https://doi.org/10.1016/j.matpr.2018.02.204.

DOI: 10.1016/j.matpr.2018.02.204

Google Scholar

[33] M. Campo, M. Carboneras, M.D. López, B. Torres, P. Rodrigo, E. Otero, J. Rams, Corrosion resistance of thermally sprayed Al and Al/SiC coatings on Mg, Surface and Coatings Technology, Volume 203, Issues 20–21, 2009, Pages 3224-3230, https://doi.org/10.1016/j.surfcoat. 2009.03.057.

DOI: 10.1016/j.surfcoat.2009.03.057

Google Scholar